IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v84y2019icp199-211.html
   My bibliography  Save this article

Empirical safety stock estimation based on kernel and GARCH models

Author

Listed:
  • Trapero, Juan R.
  • Cardós, Manuel
  • Kourentzes, Nikolaos

Abstract

Supply chain risk management has drawn the attention of practitioners and academics alike. One source of risk is demand uncertainty. Demand forecasting and safety stock levels are employed to address this risk. Most previous work has focused on point demand forecasting, given that the forecast errors satisfy the typical normal i.i.d. assumption. However, the real demand for products is difficult to forecast accurately, which means that—at minimum—the i.i.d. assumption should be questioned. This work analyzes the effects of possible deviations from the i.i.d. assumption and proposes empirical methods based on kernel density estimation (non-parametric) and GARCH(1,1) models (parametric), among others, for computing the safety stock levels. The results suggest that for shorter lead times, the normality deviation is more important, and kernel density estimation is most suitable. By contrast, for longer lead times, GARCH models are more appropriate because the autocorrelation of the variance of the forecast errors is the most important deviation. In fact, even when no autocorrelation is present in the original demand, such autocorrelation can be present as a consequence of the overlapping process used to compute the lead time forecasts and the uncertainties arising in the estimation of the parameters of the forecasting model. Improvements are shown in terms of cycle service level, inventory investment and backorder volume. Simulations and real demand data from a manufacturer are used to illustrate our methodology.

Suggested Citation

  • Trapero, Juan R. & Cardós, Manuel & Kourentzes, Nikolaos, 2019. "Empirical safety stock estimation based on kernel and GARCH models," Omega, Elsevier, vol. 84(C), pages 199-211.
  • Handle: RePEc:eee:jomega:v:84:y:2019:i:c:p:199-211
    DOI: 10.1016/j.omega.2018.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048316306090
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2018.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiaolong, 2007. "Inventory control under temporal demand heteroscedasticity," European Journal of Operational Research, Elsevier, vol. 182(1), pages 127-144, October.
    2. Tang, Christopher S. & Davarzani, Hoda & Sarkis, Joseph, 2015. "Quantitative models for managing supply chain risks: A reviewAuthor-Name: Fahimnia, Behnam," European Journal of Operational Research, Elsevier, vol. 247(1), pages 1-15.
    3. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    4. Everette S. Gardner, 1990. "Evaluating Forecast Performance in an Inventory Control System," Management Science, INFORMS, vol. 36(4), pages 490-499, April.
    5. Matthew P. Manary & Sean P. Willems & Alison F. Shihata, 2009. "Correcting Heterogeneous and Biased Forecast Error at Intel for Supply Chain Optimization," Interfaces, INFORMS, vol. 39(5), pages 415-427, October.
    6. Beutel, Anna-Lena & Minner, Stefan, 2012. "Safety stock planning under causal demand forecasting," International Journal of Production Economics, Elsevier, vol. 140(2), pages 637-645.
    7. Syntetos, Aris A. & Zied Babai, M. & Gardner, Everette S., 2015. "Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping," Journal of Business Research, Elsevier, vol. 68(8), pages 1746-1752.
    8. Strijbosch, L. W. G. & Heuts, R. M. J., 1992. "Modelling (s, Q) inventory systems: Parametric versus non-parametric approximations for the lead time demand distribution," European Journal of Operational Research, Elsevier, vol. 63(1), pages 86-101, November.
    9. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
    10. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    11. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. Kourentzes, Nikolaos & Petropoulos, Fotios, 2016. "Forecasting with multivariate temporal aggregation: The case of promotional modelling," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 145-153.
    14. Trapero, Juan R. & Pedregal, Diego J. & Fildes, R. & Kourentzes, N., 2013. "Analysis of judgmental adjustments in the presence of promotions," International Journal of Forecasting, Elsevier, vol. 29(2), pages 234-243.
    15. Lee, Yun Shin, 2014. "A semi-parametric approach for estimating critical fractiles under autocorrelated demand," European Journal of Operational Research, Elsevier, vol. 234(1), pages 163-173.
    16. Heckmann, Iris & Comes, Tina & Nickel, Stefan, 2015. "A critical review on supply chain risk – Definition, measure and modeling," Omega, Elsevier, vol. 52(C), pages 119-132.
    17. Barrow, Devon K. & Kourentzes, Nikolaos, 2016. "Distributions of forecasting errors of forecast combinations: Implications for inventory management," International Journal of Production Economics, Elsevier, vol. 177(C), pages 24-33.
    18. Robert Fildes, 2017. "Research into Forecasting Practice," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 44, pages 39-46, Winter.
    19. Olga Isengildina-Massa & Scott Irwin & Darrel Good & Luca Massa, 2011. "Empirical confidence intervals for USDA commodity price forecasts," Applied Economics, Taylor & Francis Journals, vol. 43(26), pages 3789-3803.
    20. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2003. "Measuring and avoiding the bullwhip effect: A control theoretic approach," European Journal of Operational Research, Elsevier, vol. 147(3), pages 567-590, June.
    21. T L Urban, 2000. "Reorder level determination with serially-correlated demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(6), pages 762-768, June.
    22. Stephen C. Graves, 1999. "A Single-Item Inventory Model for a Nonstationary Demand Process," Manufacturing & Service Operations Management, INFORMS, vol. 1(1), pages 50-61.
    23. Prak, Dennis & Teunter, Ruud & Syntetos, Aris, 2017. "On the calculation of safety stocks when demand is forecasted," European Journal of Operational Research, Elsevier, vol. 256(2), pages 454-461.
    24. Juan R Trapero & Nikolaos Kourentzes & Robert Fildes, 2015. "On the identification of sales forecasting models in the presence of promotions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(2), pages 299-307, February.
    25. Kourentzes, Nikolaos, 2014. "On intermittent demand model optimisation and selection," International Journal of Production Economics, Elsevier, vol. 156(C), pages 180-190.
    26. Porras, Eric & Dekker, Rommert, 2008. "An inventory control system for spare parts at a refinery: An empirical comparison of different re-order point methods," European Journal of Operational Research, Elsevier, vol. 184(1), pages 101-132, January.
    27. Matthew P. Manary & Sean P. Willems, 2008. "Setting Safety-Stock Targets at Intel in the Presence of Forecast Bias," Interfaces, INFORMS, vol. 38(2), pages 112-122, April.
    28. Stephen C. Graves, 1999. "Addendum to "A Single-Item Inventory Model for a Nonstationary Demand Process"," Manufacturing & Service Operations Management, INFORMS, vol. 1(2), pages 174-174.
    29. S Datta & C W J Granger & M Barari & T Gibbs, 2007. "Management of supply chain: an alternative modelling technique for forecasting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1459-1469, November.
    30. Syntetos, Aris A. & Boylan, John E., 2006. "On the stock control performance of intermittent demand estimators," International Journal of Production Economics, Elsevier, vol. 103(1), pages 36-47, September.
    31. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
    32. Boylan, John E. & Babai, M. Zied, 2016. "On the performance of overlapping and non-overlapping temporal demand aggregation approaches," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 136-144.
    33. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kourentzes, Nikolaos & Trapero, Juan R. & Barrow, Devon K., 2020. "Optimising forecasting models for inventory planning," International Journal of Production Economics, Elsevier, vol. 225(C).
    2. Barros, Júlio & Cortez, Paulo & Carvalho, M. Sameiro, 2021. "A systematic literature review about dimensioning safety stock under uncertainties and risks in the procurement process," Operations Research Perspectives, Elsevier, vol. 8(C).
    3. Kourentzes, Nikolaos & Athanasopoulos, George, 2021. "Elucidate structure in intermittent demand series," European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
    4. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    5. Gonçalves, João N.C. & Sameiro Carvalho, M. & Cortez, Paulo, 2020. "Operations research models and methods for safety stock determination: A review," Operations Research Perspectives, Elsevier, vol. 7(C).
    6. Saoud, Patrick & Kourentzes, Nikolaos & Boylan, John E., 2022. "Approximations for the Lead Time Variance: a Forecasting and Inventory Evaluation," Omega, Elsevier, vol. 110(C).
    7. Kück, Mirko & Freitag, Michael, 2021. "Forecasting of customer demands for production planning by local k-nearest neighbor models," International Journal of Production Economics, Elsevier, vol. 231(C).
    8. Mamonov, Nikolay & Golubyatnikov, Evgeny & Kanevskiy, Daniel & Gusakov, Igor, 2022. "GoodsForecast second-place solution in M5 Uncertainty track: Combining heterogeneous models for a quantile estimation task," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1434-1441.
    9. Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2023. "Shrinkage estimator for exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1351-1365.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trapero, Juan R. & Cardós, Manuel & Kourentzes, Nikolaos, 2019. "Quantile forecast optimal combination to enhance safety stock estimation," International Journal of Forecasting, Elsevier, vol. 35(1), pages 239-250.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Saoud, Patrick & Kourentzes, Nikolaos & Boylan, John E., 2022. "Approximations for the Lead Time Variance: a Forecasting and Inventory Evaluation," Omega, Elsevier, vol. 110(C).
    4. Trapero, Juan R., 2016. "Calculation of solar irradiation prediction intervals combining volatility and kernel density estimates," Energy, Elsevier, vol. 114(C), pages 266-274.
    5. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    6. Kourentzes, Nikolaos & Trapero, Juan R. & Barrow, Devon K., 2020. "Optimising forecasting models for inventory planning," International Journal of Production Economics, Elsevier, vol. 225(C).
    7. Kück, Mirko & Freitag, Michael, 2021. "Forecasting of customer demands for production planning by local k-nearest neighbor models," International Journal of Production Economics, Elsevier, vol. 231(C).
    8. Petropoulos, Fotios & Wang, Xun & Disney, Stephen M., 2019. "The inventory performance of forecasting methods: Evidence from the M3 competition data," International Journal of Forecasting, Elsevier, vol. 35(1), pages 251-265.
    9. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    10. Prak, Dennis & Teunter, Ruud & Syntetos, Aris, 2017. "On the calculation of safety stocks when demand is forecasted," European Journal of Operational Research, Elsevier, vol. 256(2), pages 454-461.
    11. Babai, M.Z. & Ali, M.M. & Boylan, J.E. & Syntetos, A.A., 2013. "Forecasting and inventory performance in a two-stage supply chain with ARIMA(0,1,1) demand: Theory and empirical analysis," International Journal of Production Economics, Elsevier, vol. 143(2), pages 463-471.
    12. Sagaert, Yves R. & Aghezzaf, El-Houssaine & Kourentzes, Nikolaos & Desmet, Bram, 2018. "Tactical sales forecasting using a very large set of macroeconomic indicators," European Journal of Operational Research, Elsevier, vol. 264(2), pages 558-569.
    13. Sagaert, Yves R. & Kourentzes, Nikolaos & De Vuyst, Stijn & Aghezzaf, El-Houssaine & Desmet, Bram, 2019. "Incorporating macroeconomic leading indicators in tactical capacity planning," International Journal of Production Economics, Elsevier, vol. 209(C), pages 12-19.
    14. Babai, M. Zied & Dai, Yong & Li, Qinyun & Syntetos, Aris & Wang, Xun, 2022. "Forecasting of lead-time demand variance: Implications for safety stock calculations," European Journal of Operational Research, Elsevier, vol. 296(3), pages 846-861.
    15. Barros, Júlio & Cortez, Paulo & Carvalho, M. Sameiro, 2021. "A systematic literature review about dimensioning safety stock under uncertainties and risks in the procurement process," Operations Research Perspectives, Elsevier, vol. 8(C).
    16. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
    17. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    18. Mirko Kremer & Enno Siemsen & Douglas J. Thomas, 2016. "The Sum and Its Parts: Judgmental Hierarchical Forecasting," Management Science, INFORMS, vol. 62(9), pages 2745-2764, September.
    19. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    20. Sroginis, Anna & Fildes, Robert & Kourentzes, Nikolaos, 2023. "Use of contextual and model-based information in adjusting promotional forecasts," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1177-1191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:84:y:2019:i:c:p:199-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.