IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v210y2013i1p57-7210.1007-s10479-011-0883-6.html
   My bibliography  Save this article

On generating maximal nondominated Benders cuts

Author

Listed:
  • Hanif Sherali
  • Brian Lunday

Abstract

In this paper, we explore certain algorithmic strategies for accelerating the convergence of Benders decomposition method via the generation of maximal nondominated cuts. Based on interpreting the seminal work of Magnanti and Wong (Operations Research, 29(3), 464–484, 1981 ) for generating nondominated cuts within a multiobjective framework, we propose an algorithmic strategy that utilizes a preemptively small perturbation of the right-hand-side of the Benders subproblem to generate maximal nondominated Benders cuts, as well as a complimentary strategy that generates an additional cut in each iteration via an alternative emphasis on decision variable weights. We also examine the computational effectiveness of solving a secondary subproblem using an objective cut as proposed by Magnanti and Wong versus identifying the Pareto-optimality region for cut generation by utilizing complementary slackness conditions. In addition, we exhibit how a standard feasibility cut can be extracted from the solution of subproblems that generate only optimality cuts through the use of artificial variables. With Magnanti and Wong’s baseline procedure approximated during implementation via the use of a core point estimation technique (Papadakos in Computers and Operations Research, 36(1), 176–195, 2009 ), these algorithmic strategies are tested on instances from the literature concerning the fixed charge network flow program. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Hanif Sherali & Brian Lunday, 2013. "On generating maximal nondominated Benders cuts," Annals of Operations Research, Springer, vol. 210(1), pages 57-72, November.
  • Handle: RePEc:spr:annopr:v:210:y:2013:i:1:p:57-72:10.1007/s10479-011-0883-6
    DOI: 10.1007/s10479-011-0883-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-011-0883-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-011-0883-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    2. Cote, Gilles & Laughton, Michael A., 1984. "Large-scale mixed integer programming: Benders-type heuristics," European Journal of Operational Research, Elsevier, vol. 16(3), pages 327-333, June.
    3. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    4. VAN ROY, Tony J., 1983. "Cross decomposition for mixed integer programming," LIDAM Reprints CORE 496, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Walter Rei & Jean-François Cordeau & Michel Gendreau & Patrick Soriano, 2009. "Accelerating Benders Decomposition by Local Branching," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 333-345, May.
    6. Dale McDaniel & Mike Devine, 1977. "A Modified Benders' Partitioning Algorithm for Mixed Integer Programming," Management Science, INFORMS, vol. 24(3), pages 312-319, November.
    7. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    8. A. M. Geoffrion & G. W. Graves, 1974. "Multicommodity Distribution System Design by Benders Decomposition," Management Science, INFORMS, vol. 20(5), pages 822-844, January.
    9. Sherali, Hanif D., 1982. "Equivalent weights for lexicographic multi-objective programs: Characterizations and computations," European Journal of Operational Research, Elsevier, vol. 11(4), pages 367-379, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    2. Ragheb Rahmaniani & Shabbir Ahmed & Teodor Gabriel Crainic & Michel Gendreau & Walter Rei, 2020. "The Benders Dual Decomposition Method," Operations Research, INFORMS, vol. 68(3), pages 878-895, May.
    3. Walter Rei & Jean-François Cordeau & Michel Gendreau & Patrick Soriano, 2009. "Accelerating Benders Decomposition by Local Branching," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 333-345, May.
    4. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    5. Maher, Stephen J., 2021. "Implementing the branch-and-cut approach for a general purpose Benders’ decomposition framework," European Journal of Operational Research, Elsevier, vol. 290(2), pages 479-498.
    6. M. Jenabi & S. Fatemi Ghomi & S. Torabi & S. Hosseinian, 2015. "Acceleration strategies of Benders decomposition for the security constraints power system expansion planning," Annals of Operations Research, Springer, vol. 235(1), pages 337-369, December.
    7. Jeihoonian, Mohammad & Kazemi Zanjani, Masoumeh & Gendreau, Michel, 2016. "Accelerating Benders decomposition for closed-loop supply chain network design: Case of used durable products with different quality levels," European Journal of Operational Research, Elsevier, vol. 251(3), pages 830-845.
    8. Joe Naoum-Sawaya & Samir Elhedhli, 2013. "An interior-point Benders based branch-and-cut algorithm for mixed integer programs," Annals of Operations Research, Springer, vol. 210(1), pages 33-55, November.
    9. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    10. de Sá, Elisangela Martins & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2013. "An improved Benders decomposition algorithm for the tree of hubs location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 185-202.
    11. M. Jenabi & S. M. T. Fatemi Ghomi & S. A. Torabi & Moeen Sammak Jalali, 2022. "An accelerated Benders decomposition algorithm for stochastic power system expansion planning using sample average approximation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1304-1336, December.
    12. Lixin Tang & Wei Jiang & Georgios Saharidis, 2013. "An improved Benders decomposition algorithm for the logistics facility location problem with capacity expansions," Annals of Operations Research, Springer, vol. 210(1), pages 165-190, November.
    13. Teodor Gabriel Crainic & Mike Hewitt & Francesca Maggioni & Walter Rei, 2021. "Partial Benders Decomposition: General Methodology and Application to Stochastic Network Design," Transportation Science, INFORMS, vol. 55(2), pages 414-435, March.
    14. Altay, Nezih & Robinson Jr., Powell E. & Bretthauer, Kurt M., 2008. "Exact and heuristic solution approaches for the mixed integer setup knapsack problem," European Journal of Operational Research, Elsevier, vol. 190(3), pages 598-609, November.
    15. Weiguo Zhang & Xiaolei He, 2022. "A New Scenario Reduction Method Based on Higher-Order Moments," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1903-1918, July.
    16. Pearce, Robin H. & Forbes, Michael, 2018. "Disaggregated Benders decomposition and branch-and-cut for solving the budget-constrained dynamic uncapacitated facility location and network design problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 78-88.
    17. Kiho Seo & Seulgi Joung & Chungmok Lee & Sungsoo Park, 2022. "A Closest Benders Cut Selection Scheme for Accelerating the Benders Decomposition Algorithm," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2804-2827, September.
    18. Munoz, F.D. & Hobbs, B.F. & Watson, J.-P., 2016. "New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints," European Journal of Operational Research, Elsevier, vol. 248(3), pages 888-898.
    19. Keyvanshokooh, Esmaeil & Ryan, Sarah M. & Kabir, Elnaz, 2016. "Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition," European Journal of Operational Research, Elsevier, vol. 249(1), pages 76-92.
    20. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:210:y:2013:i:1:p:57-72:10.1007/s10479-011-0883-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.