IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v30y2014i3p240-257.html
   My bibliography  Save this article

Knowledge‐based scenario tree generation methods and application in multiperiod portfolio selection problem

Author

Listed:
  • Zhiping Chen
  • Daobao Xu

Abstract

A scenario tree is an efficient way to represent a stochastic data process in decision problems under uncertainty. This paper addresses how to efficiently generate appropriate scenario trees. A knowledge‐based scenario tree generation method is proposed; the new method is further improved by accounting for subjective judgements or expectations about the random future. Compared with existing approaches, complicated mathematical models and time‐consuming estimation, simulation and optimization problem solution are avoided in our knowledge‐based algorithms, and large‐scale scenario trees can be quickly generated. To show the advantages of the new algorithms, a multiperiod portfolio selection problem is considered, and a dynamic risk measure is adopted to control the intermediate risk, which is superior to the single‐period risk measure used in the existing literature. A series of numerical experiments are carried out by using real trading data from the Shanghai stock market. The results show that the scenarios generated by our algorithms can properly represent the underlying distribution; our algorithms have high performance, say, a scenario tree with up to 10,000 scenarios can be generated in less than a half minute. The applications in the multiperiod portfolio management problem demonstrate that our scenario tree generation methods are stable, and the optimal trading strategies obtained with the generated scenario tree are reasonable, efficient and robust. Copyright © 2013 John Wiley & Sons, Ltd.

Suggested Citation

  • Zhiping Chen & Daobao Xu, 2014. "Knowledge‐based scenario tree generation methods and application in multiperiod portfolio selection problem," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 30(3), pages 240-257, May.
  • Handle: RePEc:wly:apsmbi:v:30:y:2014:i:3:p:240-257
    DOI: 10.1002/asmb.1970
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.1970
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.1970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiguo Zhang & Xiaolei He, 2022. "A New Scenario Reduction Method Based on Higher-Order Moments," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1903-1918, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:30:y:2014:i:3:p:240-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.