IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v32y2020i2p507-530.html
   My bibliography  Save this article

Piecewise Linear Function Fitting via Mixed-Integer Linear Programming

Author

Listed:
  • Steffen Rebennack

    (Institute of Operations Research, Karlsruhe Institute of Technology, 76185 Karlsruhe, Baden-Württemberg, Germany)

  • Vitaliy Krasko

    (Division of Economics and Business, Colorado School of Mines, Golden, Colorado 80401)

Abstract

Piecewise linear (PWL) functions are used in a variety of applications. Computing such continuous PWL functions, however, is a challenging task. Software packages and the literature on PWL function fitting are dominated by heuristic methods. This is true for both fitting discrete data points and continuous univariate functions. The only exact methods rely on nonconvex model formulations. Exact methods compute continuous PWL function for a fixed number of breakpoints minimizing some distance function between the original function and the PWL function. An optimal PWL function can only be computed if the breakpoints are allowed to be placed freely and are not fixed to a set of candidate breakpoints. In this paper, we propose the first convex model for optimal continuous univariate PWL function fitting. Dependent on the metrics chosen, the resulting formulations are either mixed-integer linear programming or mixed-integer quadratic programming problems. These models yield optimal continuous PWL functions for a set of discrete data. On the basis of these convex formulations, we further develop an exact algorithm to fit continuous univariate functions. Computational results for benchmark instances from the literature demonstrate the superiority of the proposed convex models compared with state-of-the-art nonconvex models.

Suggested Citation

  • Steffen Rebennack & Vitaliy Krasko, 2020. "Piecewise Linear Function Fitting via Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 507-530, April.
  • Handle: RePEc:inm:orijoc:v:32:y:2020:i:2:p:507-530
    DOI: 10.1287/ijoc.2019.0890
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2019.0890
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2019.0890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Toriello, Alejandro & Vielma, Juan Pablo, 2012. "Fitting piecewise linear continuous functions," European Journal of Operational Research, Elsevier, vol. 219(1), pages 86-95.
    2. Simon N. Wood, 2001. "Minimizing Model Fitting Objectives That Contain Spurious Local Minima by Bootstrap Restarting," Biometrics, The International Biometric Society, vol. 57(1), pages 240-244, March.
    3. Steffen Rebennack & Josef Kallrath, 2015. "Continuous Piecewise Linear Delta-Approximations for Univariate Functions: Computing Minimal Breakpoint Systems," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 617-643, November.
    4. Keely L. Croxton & Bernard Gendron & Thomas L. Magnanti, 2003. "A Comparison of Mixed-Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems," Management Science, INFORMS, vol. 49(9), pages 1268-1273, September.
    5. Timo Lohmann & Steffen Rebennack, 2017. "Tailored Benders Decomposition for a Long-Term Power Expansion Model with Short-Term Demand Response," Management Science, INFORMS, vol. 63(6), pages 2027-2048, June.
    6. B. Feijoo & R. R. Meyer, 1988. "Piecewise-Linear Approximation Methods for Nonseparable Convex Optimization," Management Science, INFORMS, vol. 34(3), pages 411-419, March.
    7. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    8. Steffen Rebennack & Josef Kallrath, 2015. "Continuous Piecewise Linear Delta-Approximations for Bivariate and Multivariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 102-117, October.
    9. Noam Goldberg & Youngdae Kim & Sven Leyffer & Thomas Veselka, 2014. "Adaptively refined dynamic program for linear spline regression," Computational Optimization and Applications, Springer, vol. 58(3), pages 523-541, July.
    10. Ruth Misener & Christodoulos Floudas, 2013. "GloMIQO: Global mixed-integer quadratic optimizer," Journal of Global Optimization, Springer, vol. 57(1), pages 3-50, September.
    11. Kevin McCoy & Vitaliy Krasko & Paul Santi & Daniel Kaffine & Steffen Rebennack, 2016. "Minimizing economic impacts from post-fire debris flows in the western United States," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 149-176, August.
    12. Dimitris Bertsimas & Romy Shioda, 2007. "Classification and Regression via Integer Optimization," Operations Research, INFORMS, vol. 55(2), pages 252-271, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aakil M. Caunhye & Douglas Alem, 2023. "Practicable robust stochastic optimization under divergence measures with an application to equitable humanitarian response planning," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 759-806, September.
    2. Mohammadi Fathabad, Abolhassan & Cheng, Jianqiang & Pan, Kai & Yang, Boshi, 2023. "Asymptotically tight conic approximations for chance-constrained AC optimal power flow," European Journal of Operational Research, Elsevier, vol. 305(2), pages 738-753.
    3. Barbato, Michele & Ceselli, Alberto, 2024. "Mathematical programming for simultaneous feature selection and outlier detection under l1 norm," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1070-1084.
    4. John Alasdair Warwicker & Steffen Rebennack, 2022. "A Comparison of Two Mixed-Integer Linear Programs for Piecewise Linear Function Fitting," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1042-1047, March.
    5. Aloïs Duguet & Christian Artigues & Laurent Houssin & Sandra Ulrich Ngueveu, 2022. "Properties, Extensions and Application of Piecewise Linearization for Euclidean Norm Optimization in $$\mathbb {R}^2$$ R 2," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 418-448, November.
    6. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.
    7. Artem Prokhorov & Peter Radchenko & Alexander Semenov & Anton Skrobotov, 2024. "Change-Point Detection in Time Series Using Mixed Integer Programming," Papers 2408.05665, arXiv.org.
    8. Kazda, Kody & Li, Xiang, 2024. "A linear programming approach to difference-of-convex piecewise linear approximation," European Journal of Operational Research, Elsevier, vol. 312(2), pages 493-511.
    9. Nathan Sudermann-Merx & Steffen Rebennack, 2021. "Leveraged least trimmed absolute deviations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 809-834, September.
    10. Noam Goldberg & Steffen Rebennack & Youngdae Kim & Vitaliy Krasko & Sven Leyffer, 2021. "MINLP formulations for continuous piecewise linear function fitting," Computational Optimization and Applications, Springer, vol. 79(1), pages 223-233, May.
    11. David Lucas dos Santos Abreu & Erlon Cristian Finardi, 2022. "Continuous Piecewise Linear Approximation of Plant-Based Hydro Production Function for Generation Scheduling Problems," Energies, MDPI, vol. 15(5), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingxun Kong & Christos T. Maravelias, 2020. "On the Derivation of Continuous Piecewise Linear Approximating Functions," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 531-546, July.
    2. John Alasdair Warwicker & Steffen Rebennack, 2022. "A Comparison of Two Mixed-Integer Linear Programs for Piecewise Linear Function Fitting," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1042-1047, March.
    3. Shao, Yu & Zhou, Xinhong & Yu, Tingchao & Zhang, Tuqiao & Chu, Shipeng, 2024. "Pump scheduling optimization in water distribution system based on mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1140-1151.
    4. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    5. Andreas Bärmann & Robert Burlacu & Lukas Hager & Thomas Kleinert, 2023. "On piecewise linear approximations of bilinear terms: structural comparison of univariate and bivariate mixed-integer programming formulations," Journal of Global Optimization, Springer, vol. 85(4), pages 789-819, April.
    6. Kazda, Kody & Li, Xiang, 2024. "A linear programming approach to difference-of-convex piecewise linear approximation," European Journal of Operational Research, Elsevier, vol. 312(2), pages 493-511.
    7. Noam Goldberg & Steffen Rebennack & Youngdae Kim & Vitaliy Krasko & Sven Leyffer, 2021. "MINLP formulations for continuous piecewise linear function fitting," Computational Optimization and Applications, Springer, vol. 79(1), pages 223-233, May.
    8. Wu, Yaqing & Maravelias, Christos T., 2024. "Piecewise linear trees as surrogate models for system design and planning under high-frequency temporal variability," European Journal of Operational Research, Elsevier, vol. 315(2), pages 541-552.
    9. Juan Pablo Vielma, 2018. "Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139," Management Science, INFORMS, vol. 64(10), pages 4721-4734, October.
    10. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    11. Jon Lee & Daphne Skipper & Emily Speakman & Luze Xu, 2023. "Gaining or Losing Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 1-35, January.
    12. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.
    13. Nathan Sudermann-Merx & Steffen Rebennack, 2021. "Leveraged least trimmed absolute deviations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 809-834, September.
    14. Hua, Hao & Hovestadt, Ludger & Tang, Peng & Li, Biao, 2019. "Integer programming for urban design," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1125-1137.
    15. Cody Allen & Mauricio Oliveira, 2022. "A Minimal Cardinality Solution to Fitting Sawtooth Piecewise-Linear Functions," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 930-959, March.
    16. Ploussard, Quentin, 2024. "Piecewise linear approximation with minimum number of linear segments and minimum error: A fast approach to tighten and warm start the hierarchical mixed integer formulation," European Journal of Operational Research, Elsevier, vol. 315(1), pages 50-62.
    17. Aloïs Duguet & Christian Artigues & Laurent Houssin & Sandra Ulrich Ngueveu, 2022. "Properties, Extensions and Application of Piecewise Linearization for Euclidean Norm Optimization in $$\mathbb {R}^2$$ R 2," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 418-448, November.
    18. Xiaolin Huang & Jun Xu & Shuning Wang, 2012. "Exact Penalty and Optimality Condition for Nonseparable Continuous Piecewise Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 145-164, October.
    19. Nasini, Stefano & Labbé, Martine & Brotcorne, Luce, 2022. "Multi-market portfolio optimization with conditional value at risk," European Journal of Operational Research, Elsevier, vol. 300(1), pages 350-365.
    20. Emilio Carrizosa & Vanesa Guerrero & Dolores Romero Morales, 2023. "On mathematical optimization for clustering categories in contingency tables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 407-429, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:32:y:2020:i:2:p:507-530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.