IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v79y2021i1d10.1007_s10589-021-00268-5.html
   My bibliography  Save this article

MINLP formulations for continuous piecewise linear function fitting

Author

Listed:
  • Noam Goldberg

    (Bar-Ilan University)

  • Steffen Rebennack

    (Karlsruhe Institute of Technology)

  • Youngdae Kim

    (Argonne National Laboratory)

  • Vitaliy Krasko

    (Colorado School of Mines)

  • Sven Leyffer

    (Argonne National Laboratory)

Abstract

We consider a nonconvex mixed-integer nonlinear programming (MINLP) model proposed by Goldberg et al. (Comput Optim Appl 58:523–541, 2014. https://doi.org/10.1007/s10589-014-9647-y ) for piecewise linear function fitting. We show that this MINLP model is incomplete and can result in a piecewise linear curve that is not the graph of a function, because it misses a set of necessary constraints. We provide two counterexamples to illustrate this effect, and propose three alternative models that correct this behavior. We investigate the theoretical relationship between these models and evaluate their computational performance.

Suggested Citation

  • Noam Goldberg & Steffen Rebennack & Youngdae Kim & Vitaliy Krasko & Sven Leyffer, 2021. "MINLP formulations for continuous piecewise linear function fitting," Computational Optimization and Applications, Springer, vol. 79(1), pages 223-233, May.
  • Handle: RePEc:spr:coopap:v:79:y:2021:i:1:d:10.1007_s10589-021-00268-5
    DOI: 10.1007/s10589-021-00268-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-021-00268-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-021-00268-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toriello, Alejandro & Vielma, Juan Pablo, 2012. "Fitting piecewise linear continuous functions," European Journal of Operational Research, Elsevier, vol. 219(1), pages 86-95.
    2. Steffen Rebennack & Vitaliy Krasko, 2020. "Piecewise Linear Function Fitting via Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 507-530, April.
    3. Steffen Rebennack & Josef Kallrath, 2015. "Continuous Piecewise Linear Delta-Approximations for Univariate Functions: Computing Minimal Breakpoint Systems," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 617-643, November.
    4. Noam Goldberg & Youngdae Kim & Sven Leyffer & Thomas Veselka, 2014. "Adaptively refined dynamic program for linear spline regression," Computational Optimization and Applications, Springer, vol. 58(3), pages 523-541, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nathan Sudermann-Merx & Steffen Rebennack, 2021. "Leveraged least trimmed absolute deviations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 809-834, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steffen Rebennack & Vitaliy Krasko, 2020. "Piecewise Linear Function Fitting via Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 507-530, April.
    2. John Alasdair Warwicker & Steffen Rebennack, 2022. "A Comparison of Two Mixed-Integer Linear Programs for Piecewise Linear Function Fitting," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1042-1047, March.
    3. Aakil M. Caunhye & Douglas Alem, 2023. "Practicable robust stochastic optimization under divergence measures with an application to equitable humanitarian response planning," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 759-806, September.
    4. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.
    5. Kazda, Kody & Li, Xiang, 2024. "A linear programming approach to difference-of-convex piecewise linear approximation," European Journal of Operational Research, Elsevier, vol. 312(2), pages 493-511.
    6. Nathan Sudermann-Merx & Steffen Rebennack, 2021. "Leveraged least trimmed absolute deviations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 809-834, September.
    7. Aloïs Duguet & Christian Artigues & Laurent Houssin & Sandra Ulrich Ngueveu, 2022. "Properties, Extensions and Application of Piecewise Linearization for Euclidean Norm Optimization in $$\mathbb {R}^2$$ R 2," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 418-448, November.
    8. David Lucas dos Santos Abreu & Erlon Cristian Finardi, 2022. "Continuous Piecewise Linear Approximation of Plant-Based Hydro Production Function for Generation Scheduling Problems," Energies, MDPI, vol. 15(5), pages 1-23, February.
    9. Jon Lee & Daphne Skipper & Emily Speakman & Luze Xu, 2023. "Gaining or Losing Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 1-35, January.
    10. Ngueveu, Sandra Ulrich, 2019. "Piecewise linear bounding of univariate nonlinear functions and resulting mixed integer linear programming-based solution methods," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1058-1071.
    11. Jan Szczegielniak & Krzysztof J Latawiec & Jacek Łuniewski & Rafał Stanisławski & Katarzyna Bogacz & Marcin Krajczy & Marek Rydel, 2018. "A study on nonlinear estimation of submaximal effort tolerance based on the generalized MET concept and the 6MWT in pulmonary rehabilitation," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-18, February.
    12. Lingxun Kong & Christos T. Maravelias, 2020. "On the Derivation of Continuous Piecewise Linear Approximating Functions," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 531-546, July.
    13. Wang, Yongqiao & Wang, Shouyang & Dang, Chuangyin & Ge, Wenxiu, 2014. "Nonparametric quantile frontier estimation under shape restriction," European Journal of Operational Research, Elsevier, vol. 232(3), pages 671-678.
    14. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. López-Ramos, Francisco & Nasini, Stefano & Sayed, Mohamed H., 2020. "An integrated planning model in centralized power systems," European Journal of Operational Research, Elsevier, vol. 287(1), pages 361-377.
    16. Ruobing Shen & Bo Tang & Leo Liberti & Claudia D’Ambrosio & Stéphane Canu, 2021. "Learning discontinuous piecewise affine fitting functions using mixed integer programming over lattice," Journal of Global Optimization, Springer, vol. 81(1), pages 85-108, September.
    17. Shao, Yu & Zhou, Xinhong & Yu, Tingchao & Zhang, Tuqiao & Chu, Shipeng, 2024. "Pump scheduling optimization in water distribution system based on mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1140-1151.
    18. Kevin McCoy & Vitaliy Krasko & Paul Santi & Daniel Kaffine & Steffen Rebennack, 2016. "Minimizing economic impacts from post-fire debris flows in the western United States," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 149-176, August.
    19. Mohammadi Fathabad, Abolhassan & Cheng, Jianqiang & Pan, Kai & Yang, Boshi, 2023. "Asymptotically tight conic approximations for chance-constrained AC optimal power flow," European Journal of Operational Research, Elsevier, vol. 305(2), pages 738-753.
    20. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:79:y:2021:i:1:d:10.1007_s10589-021-00268-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.