IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v312y2024i2p493-511.html
   My bibliography  Save this article

A linear programming approach to difference-of-convex piecewise linear approximation

Author

Listed:
  • Kazda, Kody
  • Li, Xiang

Abstract

We address the problem of finding continuous piecewise linear (CPWL) approximations of deterministic functions of any dimension that satisfy any predefined error-tolerance, while keeping the number of polytopes that partition the approximation domain low. Specifically, we focus on overcoming the major computational bottleneck of the CPWL Approximation Algorithm (CPWL-AA) that has been proposed in the recent literature. CPWL-AA uses the difference-of-convex CPWL representation to search CPWL approximations which can partition the approximation domain to have polytopes of any shape. A computational bottleneck of the method is to solve a mixed-integer linear program (MILP) in which the number of binary variables is large for many problems of practical interest. In this paper, we overcome this by introducing a method that obtains a high quality solution of the MILP by iteratively solving a linear program (LP). We further reduce the computational expense by developing a method that treats some constraints in the LP problem as lazy constraints. Through a computational study we demonstrate that the proposed methods substantially reduce the computation time of CPWL-AA, while maintaining high quality CPWL approximations. With this, we demonstrate that we can generate CPWL approximations that satisfy predefined error-tolerances on functions of up to five dimensions within reasonable solution times.

Suggested Citation

  • Kazda, Kody & Li, Xiang, 2024. "A linear programming approach to difference-of-convex piecewise linear approximation," European Journal of Operational Research, Elsevier, vol. 312(2), pages 493-511.
  • Handle: RePEc:eee:ejores:v:312:y:2024:i:2:p:493-511
    DOI: 10.1016/j.ejor.2023.07.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723005647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.07.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toriello, Alejandro & Vielma, Juan Pablo, 2012. "Fitting piecewise linear continuous functions," European Journal of Operational Research, Elsevier, vol. 219(1), pages 86-95.
    2. Steffen Rebennack & Vitaliy Krasko, 2020. "Piecewise Linear Function Fitting via Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 507-530, April.
    3. Lingxun Kong & Christos T. Maravelias, 2020. "On the Derivation of Continuous Piecewise Linear Approximating Functions," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 531-546, July.
    4. Charles Audet & Jack Brimberg & Pierre Hansen & Sébastien Le Digabel & Nenad Mladenovi'{c}, 2004. "Pooling Problem: Alternate Formulations and Solution Methods," Management Science, INFORMS, vol. 50(6), pages 761-776, June.
    5. R. Misener & C. A. Floudas, 2010. "Piecewise-Linear Approximations of Multidimensional Functions," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 120-147, April.
    6. Björn Geißler & Oliver Kolb & Jens Lang & Günter Leugering & Alexander Martin & Antonio Morsi, 2011. "Mixed integer linear models for the optimization of dynamical transport networks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(3), pages 339-362, June.
    7. Mohammed Alfaki & Dag Haugland, 2013. "Strong formulations for the pooling problem," Journal of Global Optimization, Springer, vol. 56(3), pages 897-916, July.
    8. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    9. Steffen Rebennack & Josef Kallrath, 2015. "Continuous Piecewise Linear Delta-Approximations for Bivariate and Multivariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 102-117, October.
    10. Steffen Rebennack, 2016. "Computing tight bounds via piecewise linear functions through the example of circle cutting problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 3-57, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Alasdair Warwicker & Steffen Rebennack, 2022. "A Comparison of Two Mixed-Integer Linear Programs for Piecewise Linear Function Fitting," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1042-1047, March.
    2. Wu, Yaqing & Maravelias, Christos T., 2024. "Piecewise linear trees as surrogate models for system design and planning under high-frequency temporal variability," European Journal of Operational Research, Elsevier, vol. 315(2), pages 541-552.
    3. Steffen Rebennack & Vitaliy Krasko, 2020. "Piecewise Linear Function Fitting via Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 507-530, April.
    4. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.
    5. Er-Rahmadi, Btissam & Ma, Tiejun, 2022. "Data-driven mixed-Integer linear programming-based optimisation for efficient failure detection in large-scale distributed systems," European Journal of Operational Research, Elsevier, vol. 303(1), pages 337-353.
    6. David Lucas dos Santos Abreu & Erlon Cristian Finardi, 2022. "Continuous Piecewise Linear Approximation of Plant-Based Hydro Production Function for Generation Scheduling Problems," Energies, MDPI, vol. 15(5), pages 1-23, February.
    7. Natashia Boland & Thomas Kalinowski & Fabian Rigterink, 2016. "New multi-commodity flow formulations for the pooling problem," Journal of Global Optimization, Springer, vol. 66(4), pages 669-710, December.
    8. Codas, Andrés & Camponogara, Eduardo, 2012. "Mixed-integer linear optimization for optimal lift-gas allocation with well-separator routing," European Journal of Operational Research, Elsevier, vol. 217(1), pages 222-231.
    9. Jon Lee & Daphne Skipper & Emily Speakman & Luze Xu, 2023. "Gaining or Losing Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 1-35, January.
    10. Noam Goldberg & Steffen Rebennack & Youngdae Kim & Vitaliy Krasko & Sven Leyffer, 2021. "MINLP formulations for continuous piecewise linear function fitting," Computational Optimization and Applications, Springer, vol. 79(1), pages 223-233, May.
    11. Steffen Rebennack, 2016. "Computing tight bounds via piecewise linear functions through the example of circle cutting problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 3-57, August.
    12. Lingxun Kong & Christos T. Maravelias, 2020. "On the Derivation of Continuous Piecewise Linear Approximating Functions," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 531-546, July.
    13. Natashia Boland & Thomas Kalinowski & Fabian Rigterink, 2017. "A polynomially solvable case of the pooling problem," Journal of Global Optimization, Springer, vol. 67(3), pages 621-630, March.
    14. Shao, Yu & Zhou, Xinhong & Yu, Tingchao & Zhang, Tuqiao & Chu, Shipeng, 2024. "Pump scheduling optimization in water distribution system based on mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1140-1151.
    15. Mohammadi Fathabad, Abolhassan & Cheng, Jianqiang & Pan, Kai & Yang, Boshi, 2023. "Asymptotically tight conic approximations for chance-constrained AC optimal power flow," European Journal of Operational Research, Elsevier, vol. 305(2), pages 738-753.
    16. Radu Baltean-Lugojan & Ruth Misener, 2018. "Piecewise parametric structure in the pooling problem: from sparse strongly-polynomial solutions to NP-hardness," Journal of Global Optimization, Springer, vol. 71(4), pages 655-690, August.
    17. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    18. Andreas Bärmann & Robert Burlacu & Lukas Hager & Thomas Kleinert, 2023. "On piecewise linear approximations of bilinear terms: structural comparison of univariate and bivariate mixed-integer programming formulations," Journal of Global Optimization, Springer, vol. 85(4), pages 789-819, April.
    19. Michelle L. Blom & Christina N. Burt & Adrian R. Pearce & Peter J. Stuckey, 2014. "A Decomposition-Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 658-676, November.
    20. Nathan Sudermann-Merx & Steffen Rebennack, 2021. "Leveraged least trimmed absolute deviations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 809-834, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:312:y:2024:i:2:p:493-511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.