IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v315y2024i2p541-552.html
   My bibliography  Save this article

Piecewise linear trees as surrogate models for system design and planning under high-frequency temporal variability

Author

Listed:
  • Wu, Yaqing
  • Maravelias, Christos T.

Abstract

The design and planning of systems subject to high-frequency time-varying conditions (e.g., prices, resource supplies, and customer demand) requires the solution of multi-period optimization problems, which have to account for operational aspects that are often described by complex nonlinear models. Accordingly, to overcome the computational challenges associated with the solution of the above problems, we present a framework to build computationally efficient and yet accurate optimization models. We also propose a general method to use trained piecewise linear (PWL) trees as surrogate models to approximate nonlinearities in relatively high dimensions and embed these trees onto mathematical optimization models. We show that, for some datasets, embedding PWL trees leads to models that result in a better balance between accuracy and computational performance when compared with approaches based on other machine-learning surrogate models. We showcase the applicability of the proposed framework via a case study on maintenance optimization of building cooling systems.

Suggested Citation

  • Wu, Yaqing & Maravelias, Christos T., 2024. "Piecewise linear trees as surrogate models for system design and planning under high-frequency temporal variability," European Journal of Operational Research, Elsevier, vol. 315(2), pages 541-552.
  • Handle: RePEc:eee:ejores:v:315:y:2024:i:2:p:541-552
    DOI: 10.1016/j.ejor.2023.10.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723008032
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.10.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    2. Toriello, Alejandro & Vielma, Juan Pablo, 2012. "Fitting piecewise linear continuous functions," European Journal of Operational Research, Elsevier, vol. 219(1), pages 86-95.
    3. Lamedica, Regina & Santini, Ezio & Ruvio, Alessandro & Palagi, Laura & Rossetta, Irene, 2018. "A MILP methodology to optimize sizing of PV - Wind renewable energy systems," Energy, Elsevier, vol. 165(PB), pages 385-398.
    4. Lingxun Kong & Christos T. Maravelias, 2020. "On the Derivation of Continuous Piecewise Linear Approximating Functions," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 531-546, July.
    5. R. Misener & C. A. Floudas, 2010. "Piecewise-Linear Approximations of Multidimensional Functions," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 120-147, April.
    6. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    8. Steffen Rebennack & Josef Kallrath, 2015. "Continuous Piecewise Linear Delta-Approximations for Bivariate and Multivariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 102-117, October.
    9. Joey Huchette & Joey Huchette, 2019. "A Combinatorial Approach for Small and Strong Formulations of Disjunctive Constraints," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 793-820, August.
    10. Hu, Mengqi & Weir, Jeffery D. & Wu, Teresa, 2012. "Decentralized operation strategies for an integrated building energy system using a memetic algorithm," European Journal of Operational Research, Elsevier, vol. 217(1), pages 185-197.
    11. Aloïs Duguet & Christian Artigues & Laurent Houssin & Sandra Ulrich Ngueveu, 2022. "Properties, Extensions and Application of Piecewise Linearization for Euclidean Norm Optimization in $$\mathbb {R}^2$$ R 2," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 418-448, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazda, Kody & Li, Xiang, 2024. "A linear programming approach to difference-of-convex piecewise linear approximation," European Journal of Operational Research, Elsevier, vol. 312(2), pages 493-511.
    2. Ploussard, Quentin, 2024. "Piecewise linear approximation with minimum number of linear segments and minimum error: A fast approach to tighten and warm start the hierarchical mixed integer formulation," European Journal of Operational Research, Elsevier, vol. 315(1), pages 50-62.
    3. Steffen Rebennack & Vitaliy Krasko, 2020. "Piecewise Linear Function Fitting via Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 507-530, April.
    4. John Alasdair Warwicker & Steffen Rebennack, 2022. "A Comparison of Two Mixed-Integer Linear Programs for Piecewise Linear Function Fitting," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1042-1047, March.
    5. Codas, Andrés & Camponogara, Eduardo, 2012. "Mixed-integer linear optimization for optimal lift-gas allocation with well-separator routing," European Journal of Operational Research, Elsevier, vol. 217(1), pages 222-231.
    6. Jon Lee & Daphne Skipper & Emily Speakman & Luze Xu, 2023. "Gaining or Losing Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 1-35, January.
    7. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    8. Andreas Bärmann & Robert Burlacu & Lukas Hager & Thomas Kleinert, 2023. "On piecewise linear approximations of bilinear terms: structural comparison of univariate and bivariate mixed-integer programming formulations," Journal of Global Optimization, Springer, vol. 85(4), pages 789-819, April.
    9. Cody Allen & Mauricio Oliveira, 2022. "A Minimal Cardinality Solution to Fitting Sawtooth Piecewise-Linear Functions," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 930-959, March.
    10. Hilbers, Adriaan P. & Brayshaw, David J. & Gandy, Axel, 2023. "Reducing climate risk in energy system planning: A posteriori time series aggregation for models with storage," Applied Energy, Elsevier, vol. 334(C).
    11. Lingxun Kong & Christos T. Maravelias, 2020. "On the Derivation of Continuous Piecewise Linear Approximating Functions," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 531-546, July.
    12. Miten Mistry & Dimitrios Letsios & Gerhard Krennrich & Robert M. Lee & Ruth Misener, 2021. "Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1103-1119, July.
    13. David Lucas dos Santos Abreu & Erlon Cristian Finardi, 2022. "Continuous Piecewise Linear Approximation of Plant-Based Hydro Production Function for Generation Scheduling Problems," Energies, MDPI, vol. 15(5), pages 1-23, February.
    14. Juan Pablo Vielma, 2018. "Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139," Management Science, INFORMS, vol. 64(10), pages 4721-4734, October.
    15. Shao, Yu & Zhou, Xinhong & Yu, Tingchao & Zhang, Tuqiao & Chu, Shipeng, 2024. "Pump scheduling optimization in water distribution system based on mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1140-1151.
    16. Reinert, Christiane & Nilges, Benedikt & Baumgärtner, Nils & Bardow, André, 2024. "This is SpArta: Rigorous Optimization of Regionally Resolved Energy Systems by Spatial Aggregation and Decomposition," Applied Energy, Elsevier, vol. 367(C).
    17. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    18. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    19. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    20. Theresa Liegl & Simon Schramm & Philipp Kuhn & Thomas Hamacher, 2023. "Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps," Energies, MDPI, vol. 16(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:315:y:2024:i:2:p:541-552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.