IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v84y2022i4d10.1007_s10898-022-01184-6.html
   My bibliography  Save this article

Compact mixed-integer programming formulations in quadratic optimization

Author

Listed:
  • Benjamin Beach

    (Virginia Tech)

  • Robert Hildebrand

    (Virginia Tech)

  • Joey Huchette

    (Rice University)

Abstract

We present a technique for producing valid dual bounds for nonconvex quadratic optimization problems. The approach leverages an elegant piecewise linear approximation for univariate quadratic functions due to Yarotsky (Neural Netw 94:103–114, 2017), formulating this (simple) approximation using mixed-integer programming (MIP). Notably, the number of constraints, binary variables, and auxiliary continuous variables used in this formulation grows logarithmically in the approximation error. Combining this with a diagonal perturbation technique to convert a nonseparable quadratic function into a separable one, we present a mixed-integer convex quadratic relaxation for nonconvex quadratic optimization problems. We study the strength (or sharpness) of our formulation and the tightness of its approximation. Further, we show that our formulation represents feasible points via a Gray code. We close with computational results on problems with quadratic objectives and/or constraints, showing that our proposed method (i) across the board outperforms existing MIP relaxations from the literature, and (ii) on hard instances produces better bounds than exact solvers within a fixed time budget.

Suggested Citation

  • Benjamin Beach & Robert Hildebrand & Joey Huchette, 2022. "Compact mixed-integer programming formulations in quadratic optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 869-912, December.
  • Handle: RePEc:spr:jglopt:v:84:y:2022:i:4:d:10.1007_s10898-022-01184-6
    DOI: 10.1007/s10898-022-01184-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-022-01184-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-022-01184-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    2. Pierre Hansen & Brigitte Jaumard & MichèLe Ruiz & Junjie Xiong, 1993. "Global minimization of indefinite quadratic functions subject to box constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(3), pages 373-392, April.
    3. Keely L. Croxton & Bernard Gendron & Thomas L. Magnanti, 2003. "A Comparison of Mixed-Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems," Management Science, INFORMS, vol. 49(9), pages 1268-1273, September.
    4. Harsha Nagarajan & Mowen Lu & Site Wang & Russell Bent & Kaarthik Sundar, 2019. "An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs," Journal of Global Optimization, Springer, vol. 74(4), pages 639-675, August.
    5. Pedro A. Castillo Castillo & Pedro M. Castro & Vladimir Mahalec, 2018. "Global optimization of MIQCPs with dynamic piecewise relaxations," Journal of Global Optimization, Springer, vol. 71(4), pages 691-716, August.
    6. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    7. Santanu S. Dey & Akshay Gupte, 2015. "Analysis of MILP Techniques for the Pooling Problem," Operations Research, INFORMS, vol. 63(2), pages 412-427, April.
    8. LEE, Jon & WILSON, Dan, 2001. "Polyhedral methods for piecewise-linear functions I: the lambda method," LIDAM Reprints CORE 1493, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Thiago Lima & Camponogara, Eduardo, 2014. "A computational analysis of multidimensional piecewise-linear models with applications to oil production optimization," European Journal of Operational Research, Elsevier, vol. 232(3), pages 630-642.
    2. Juan Pablo Vielma, 2018. "Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139," Management Science, INFORMS, vol. 64(10), pages 4721-4734, October.
    3. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    4. Jon Lee & Daphne Skipper & Emily Speakman & Luze Xu, 2023. "Gaining or Losing Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 1-35, January.
    5. Andreas Bärmann & Robert Burlacu & Lukas Hager & Thomas Kleinert, 2023. "On piecewise linear approximations of bilinear terms: structural comparison of univariate and bivariate mixed-integer programming formulations," Journal of Global Optimization, Springer, vol. 85(4), pages 789-819, April.
    6. Moritz Link & Stefan Volkwein, 2023. "Adaptive piecewise linear relaxations for enclosure computations for nonconvex multiobjective mixed-integer quadratically constrained programs," Journal of Global Optimization, Springer, vol. 87(1), pages 97-132, September.
    7. Hua, Hao & Hovestadt, Ludger & Tang, Peng & Li, Biao, 2019. "Integer programming for urban design," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1125-1137.
    8. Alexander J. Zolan & Michael S. Scioletti & David P. Morton & Alexandra M. Newman, 2021. "Decomposing Loosely Coupled Mixed-Integer Programs for Optimal Microgrid Design," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1300-1319, October.
    9. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    10. Xiaolin Huang & Jun Xu & Shuning Wang, 2012. "Exact Penalty and Optimality Condition for Nonseparable Continuous Piecewise Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 145-164, October.
    11. Nasini, Stefano & Labbé, Martine & Brotcorne, Luce, 2022. "Multi-market portfolio optimization with conditional value at risk," European Journal of Operational Research, Elsevier, vol. 300(1), pages 350-365.
    12. Steffen Rebennack & Vitaliy Krasko, 2020. "Piecewise Linear Function Fitting via Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 507-530, April.
    13. Lingxun Kong & Christos T. Maravelias, 2020. "On the Derivation of Continuous Piecewise Linear Approximating Functions," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 531-546, July.
    14. Zhang, Hongbin & Yang, Yu & Wu, Feng, 2024. "Scheduling a set of jobs with convex piecewise linear cost functions on a single-batch-processing machine," Omega, Elsevier, vol. 122(C).
    15. Archetti, Claudia & Bertazzi, Luca & Grazia Speranza, M., 2014. "Polynomial cases of the economic lot sizing problem with cost discounts," European Journal of Operational Research, Elsevier, vol. 237(2), pages 519-527.
    16. Fortz, Bernard & Gouveia, Luís & Joyce-Moniz, Martim, 2017. "Models for the piecewise linear unsplittable multicommodity flow problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 30-42.
    17. Hu, Qian & Lim, Andrew & Zhu, Wenbin, 2015. "The two-dimensional vector packing problem with piecewise linear cost function," Omega, Elsevier, vol. 50(C), pages 43-53.
    18. Srikrishna Sridhar & Jeffrey Linderoth & James Luedtke, 2014. "Models and solution techniques for production planning problems with increasing byproducts," Journal of Global Optimization, Springer, vol. 59(2), pages 597-631, July.
    19. Birolini, Sebastian & Jacquillat, Alexandre & Cattaneo, Mattia & Antunes, António Pais, 2021. "Airline Network Planning: Mixed-integer non-convex optimization with demand–supply interactions," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 100-124.
    20. Shao, Yu & Zhou, Xinhong & Yu, Tingchao & Zhang, Tuqiao & Chu, Shipeng, 2024. "Pump scheduling optimization in water distribution system based on mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1140-1151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:84:y:2022:i:4:d:10.1007_s10898-022-01184-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.