IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v196y2023i1d10.1007_s10957-022-02144-6.html
   My bibliography  Save this article

Gaining or Losing Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions

Author

Listed:
  • Jon Lee

    (University of Michigan)

  • Daphne Skipper

    (United States Naval Academy)

  • Emily Speakman

    (University of Colorado)

  • Luze Xu

    (University of Michigan)

Abstract

We study mixed-integer nonlinear optimization (MINLO) formulations of the disjunction $$x\in \{0\}\cup [\ell ,u]$$ x ∈ { 0 } ∪ [ ℓ , u ] , where z is a binary indicator for $$x\in [\ell ,u]$$ x ∈ [ ℓ , u ] ( $$0 \le \ell 1$$ p > 1 .

Suggested Citation

  • Jon Lee & Daphne Skipper & Emily Speakman & Luze Xu, 2023. "Gaining or Losing Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 1-35, January.
  • Handle: RePEc:spr:joptap:v:196:y:2023:i:1:d:10.1007_s10957-022-02144-6
    DOI: 10.1007/s10957-022-02144-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02144-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02144-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toriello, Alejandro & Vielma, Juan Pablo, 2012. "Fitting piecewise linear continuous functions," European Journal of Operational Research, Elsevier, vol. 219(1), pages 86-95.
    2. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    3. J. Berenguel & L. Casado & I. García & E. Hendrix & F. Messine, 2013. "On interval branch-and-bound for additively separable functions with common variables," Journal of Global Optimization, Springer, vol. 56(3), pages 1101-1121, July.
    4. Hassan Hijazi & Pierre Bonami & Adam Ouorou, 2014. "An Outer-Inner Approximation for Separable Mixed-Integer Nonlinear Programs," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 31-44, February.
    5. Jon Lee & Daphne Skipper & Emily Speakman, 2022. "Gaining or losing perspective," Journal of Global Optimization, Springer, vol. 82(4), pages 835-862, April.
    6. LEE, Jon & WILSON, Dan, 2001. "Polyhedral methods for piecewise-linear functions I: the lambda method," LIDAM Reprints CORE 1493, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Pablo Vielma, 2018. "Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139," Management Science, INFORMS, vol. 64(10), pages 4721-4734, October.
    2. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    3. Benjamin Beach & Robert Hildebrand & Joey Huchette, 2022. "Compact mixed-integer programming formulations in quadratic optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 869-912, December.
    4. Kazda, Kody & Li, Xiang, 2024. "A linear programming approach to difference-of-convex piecewise linear approximation," European Journal of Operational Research, Elsevier, vol. 312(2), pages 493-511.
    5. Wu, Yaqing & Maravelias, Christos T., 2024. "Piecewise linear trees as surrogate models for system design and planning under high-frequency temporal variability," European Journal of Operational Research, Elsevier, vol. 315(2), pages 541-552.
    6. Steffen Rebennack & Vitaliy Krasko, 2020. "Piecewise Linear Function Fitting via Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 507-530, April.
    7. Lingxun Kong & Christos T. Maravelias, 2020. "On the Derivation of Continuous Piecewise Linear Approximating Functions," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 531-546, July.
    8. Silva, Thiago Lima & Camponogara, Eduardo, 2014. "A computational analysis of multidimensional piecewise-linear models with applications to oil production optimization," European Journal of Operational Research, Elsevier, vol. 232(3), pages 630-642.
    9. Srikrishna Sridhar & Jeffrey Linderoth & James Luedtke, 2014. "Models and solution techniques for production planning problems with increasing byproducts," Journal of Global Optimization, Springer, vol. 59(2), pages 597-631, July.
    10. Liu, Weiwei & Kong, Nan & Wang, Mingzheng & Zhang, Lingling, 2021. "Sustainable multi-commodity capacitated facility location problem with complementarity demand functions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    11. Birolini, Sebastian & Jacquillat, Alexandre & Cattaneo, Mattia & Antunes, António Pais, 2021. "Airline Network Planning: Mixed-integer non-convex optimization with demand–supply interactions," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 100-124.
    12. Codas, Andrés & Camponogara, Eduardo, 2012. "Mixed-integer linear optimization for optimal lift-gas allocation with well-separator routing," European Journal of Operational Research, Elsevier, vol. 217(1), pages 222-231.
    13. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    14. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Zhao, Zhipeng & Lu, Jia, 2022. "Wasserstein metric-based two-stage distributionally robust optimization model for optimal daily peak shaving dispatch of cascade hydroplants under renewable energy uncertainties," Energy, Elsevier, vol. 260(C).
    15. Pedro Castro & Ignacio Grossmann, 2014. "Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems," Journal of Global Optimization, Springer, vol. 59(2), pages 277-306, July.
    16. S. Göttlich & A. Potschka & C. Teuber, 2019. "A partial outer convexification approach to control transmission lines," Computational Optimization and Applications, Springer, vol. 72(2), pages 431-456, March.
    17. Li, Han-Lin & Fang, Shu-Cherng & Huang, Yao-Huei & Nie, Tiantian, 2016. "An enhanced logarithmic method for signomial programming with discrete variables," European Journal of Operational Research, Elsevier, vol. 255(3), pages 922-934.
    18. Andreas Bärmann & Robert Burlacu & Lukas Hager & Thomas Kleinert, 2023. "On piecewise linear approximations of bilinear terms: structural comparison of univariate and bivariate mixed-integer programming formulations," Journal of Global Optimization, Springer, vol. 85(4), pages 789-819, April.
    19. Massimo De Mauri & Joris Gillis & Jan Swevers & Goele Pipeleers, 2020. "A proximal-point outer approximation algorithm," Computational Optimization and Applications, Springer, vol. 77(3), pages 755-777, December.
    20. Eduardo Rauh Müller & Eduardo Camponogara & Laio Oriel Seman & Eduardo Otte Hülse & Bruno Ferreira Vieira & Luis Kin Miyatake & Alex Furtado Teixeira, 2022. "Short-term steady-state production optimization of offshore oil platforms: wells with dual completion (gas-lift and ESP) and flow assurance," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 152-180, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:196:y:2023:i:1:d:10.1007_s10957-022-02144-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.