IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v313y2024i3p1140-1151.html
   My bibliography  Save this article

Pump scheduling optimization in water distribution system based on mixed integer linear programming

Author

Listed:
  • Shao, Yu
  • Zhou, Xinhong
  • Yu, Tingchao
  • Zhang, Tuqiao
  • Chu, Shipeng

Abstract

The energy consumption in water distribution systems (WDSs) is significant. Improving the efficiency of pump operation can significantly reduce energy costs. However, optimal pump operation is a nonconvex mixed-integer nonlinear programming (MINLP) problem, which can be challenging to solve. A feasible approach is to linearize the problem and convert it into a mixed-integer linear programming (MILP) problem. However, this approach introduces many auxiliary variables, which can lead to inefficiency in finding the optimal solution due to the expanded search space. To address this issue, we propose a novel method for linearization of the original MINLP problem and a strategy that can adaptively adjust the number of piecewise linearization breakpoints. By reducing the number of auxiliary variables, our approach achieved competitive computing efficiency and the ability to save energy costs, as demonstrated in two benchmark instances. Furthermore, in a realistic large-scale WDS, our approach saved 9.83% more energy costs than the genetic algorithm and achieved a gap of only 7.36% from the lower bound.

Suggested Citation

  • Shao, Yu & Zhou, Xinhong & Yu, Tingchao & Zhang, Tuqiao & Chu, Shipeng, 2024. "Pump scheduling optimization in water distribution system based on mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1140-1151.
  • Handle: RePEc:eee:ejores:v:313:y:2024:i:3:p:1140-1151
    DOI: 10.1016/j.ejor.2023.08.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723006847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.08.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D’Ambrosio, Claudia & Lodi, Andrea & Wiese, Sven & Bragalli, Cristiana, 2015. "Mathematical programming techniques in water network optimization," European Journal of Operational Research, Elsevier, vol. 243(3), pages 774-788.
    2. Ruben Menke & Edo Abraham & Panos Parpas & Ivan Stoianov, 2016. "Exploring Optimal Pump Scheduling in Water Distribution Networks with Branch and Bound Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5333-5349, November.
    3. Steffen Rebennack & Josef Kallrath, 2015. "Continuous Piecewise Linear Delta-Approximations for Univariate Functions: Computing Minimal Breakpoint Systems," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 617-643, November.
    4. Keely L. Croxton & Bernard Gendron & Thomas L. Magnanti, 2003. "A Comparison of Mixed-Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems," Management Science, INFORMS, vol. 49(9), pages 1268-1273, September.
    5. Ghaddar, Bissan & Naoum-Sawaya, Joe & Kishimoto, Akihiro & Taheri, Nicole & Eck, Bradley, 2015. "A Lagrangian decomposition approach for the pump scheduling problem in water networks," European Journal of Operational Research, Elsevier, vol. 241(2), pages 490-501.
    6. Li, Han-Lin & Yu, Chian-Son, 1999. "A global optimization method for nonconvex separable programming problems," European Journal of Operational Research, Elsevier, vol. 117(2), pages 275-292, September.
    7. F. J. Hwang & Yao-Huei Huang, 2021. "An effective logarithmic formulation for piecewise linearization requiring no inequality constraint," Computational Optimization and Applications, Springer, vol. 79(3), pages 601-631, July.
    8. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    9. Steffen Rebennack & Josef Kallrath, 2015. "Continuous Piecewise Linear Delta-Approximations for Bivariate and Multivariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 102-117, October.
    10. Silva, Thiago Lima & Camponogara, Eduardo, 2014. "A computational analysis of multidimensional piecewise-linear models with applications to oil production optimization," European Journal of Operational Research, Elsevier, vol. 232(3), pages 630-642.
    11. Han-Lin Li & Hao-Chun Lu & Chia-Hui Huang & Nian-Ze Hu, 2009. "A Superior Representation Method for Piecewise Linear Functions," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 314-321, May.
    12. Rovatti, Riccardo & D’Ambrosio, Claudia & Lodi, Andrea & Martello, Silvano, 2014. "Optimistic MILP modeling of non-linear optimization problems," European Journal of Operational Research, Elsevier, vol. 239(1), pages 32-45.
    13. Vieira, Bruno S. & Mayerle, Sérgio F. & Campos, Lucila M.S. & Coelho, Leandro C., 2020. "Optimizing drinking water distribution system operations," European Journal of Operational Research, Elsevier, vol. 280(3), pages 1035-1050.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steffen Rebennack & Vitaliy Krasko, 2020. "Piecewise Linear Function Fitting via Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 507-530, April.
    2. Aloïs Duguet & Christian Artigues & Laurent Houssin & Sandra Ulrich Ngueveu, 2022. "Properties, Extensions and Application of Piecewise Linearization for Euclidean Norm Optimization in $$\mathbb {R}^2$$ R 2," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 418-448, November.
    3. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    4. Andreas Bärmann & Robert Burlacu & Lukas Hager & Thomas Kleinert, 2023. "On piecewise linear approximations of bilinear terms: structural comparison of univariate and bivariate mixed-integer programming formulations," Journal of Global Optimization, Springer, vol. 85(4), pages 789-819, April.
    5. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    6. Han-Lin Li & Yao-Huei Huang & Shu-Cherng Fang, 2017. "Linear Reformulation of Polynomial Discrete Programming for Fast Computation," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 108-122, February.
    7. Hua, Hao & Hovestadt, Ludger & Tang, Peng & Li, Biao, 2019. "Integer programming for urban design," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1125-1137.
    8. Naoum-Sawaya, Joe & Ghaddar, Bissan & Arandia, Ernesto & Eck, Bradley, 2015. "Simulation-optimization approaches for water pump scheduling and pipe replacement problems," European Journal of Operational Research, Elsevier, vol. 246(1), pages 293-306.
    9. Camponogara, Eduardo & Oliveira, Mateus Dubiela & Aguiar, Marco Aurélio Schmitz de, 2015. "Scheduling pumpoff operations in onshore oilfields under electric-power constraints," European Journal of Operational Research, Elsevier, vol. 247(3), pages 945-956.
    10. Nasini, Stefano & Labbé, Martine & Brotcorne, Luce, 2022. "Multi-market portfolio optimization with conditional value at risk," European Journal of Operational Research, Elsevier, vol. 300(1), pages 350-365.
    11. Selek, István & Ikonen, Enso, 2019. "Role of specific energy in decomposition of time-invariant least-cost reservoir filling problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 565-573.
    12. Lingxun Kong & Christos T. Maravelias, 2020. "On the Derivation of Continuous Piecewise Linear Approximating Functions," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 531-546, July.
    13. Zhang, Hongbin & Yang, Yu & Wu, Feng, 2024. "Scheduling a set of jobs with convex piecewise linear cost functions on a single-batch-processing machine," Omega, Elsevier, vol. 122(C).
    14. Archetti, Claudia & Bertazzi, Luca & Grazia Speranza, M., 2014. "Polynomial cases of the economic lot sizing problem with cost discounts," European Journal of Operational Research, Elsevier, vol. 237(2), pages 519-527.
    15. Silva, Thiago Lima & Camponogara, Eduardo, 2014. "A computational analysis of multidimensional piecewise-linear models with applications to oil production optimization," European Journal of Operational Research, Elsevier, vol. 232(3), pages 630-642.
    16. Hu, Qian & Lim, Andrew & Zhu, Wenbin, 2015. "The two-dimensional vector packing problem with piecewise linear cost function," Omega, Elsevier, vol. 50(C), pages 43-53.
    17. Bonvin, Gratien & Demassey, Sophie & Le Pape, Claude & Maïzi, Nadia & Mazauric, Vincent & Samperio, Alfredo, 2017. "A convex mathematical program for pump scheduling in a class of branched water networks," Applied Energy, Elsevier, vol. 185(P2), pages 1702-1711.
    18. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "A Note on “A Superior Representation Method for Piecewise Linear Functions”," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 493-497, August.
    19. Ghaddar, Bissan & Claeys, Mathieu & Mevissen, Martin & Eck, Bradley J., 2017. "Polynomial optimization for water networks: Global solutions for the valve setting problem," European Journal of Operational Research, Elsevier, vol. 261(2), pages 450-459.
    20. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:313:y:2024:i:3:p:1140-1151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.