IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v57y2013i1p3-50.html
   My bibliography  Save this article

GloMIQO: Global mixed-integer quadratic optimizer

Author

Listed:
  • Ruth Misener
  • Christodoulos Floudas

Abstract

This paper introduces the global mixed-integer quadratic optimizer, GloMIQO, a numerical solver addressing mixed-integer quadratically-constrained quadratic programs to $${\varepsilon}$$ -global optimality. The algorithmic components are presented for: reformulating user input, detecting special structure including convexity and edge-concavity, generating tight convex relaxations, partitioning the search space, bounding the variables, and finding good feasible solutions. To demonstrate the capacity of GloMIQO, we extensively tested its performance on a test suite of 399 problems of diverse size and structure. The test cases are taken from process networks applications, computational geometry problems, GLOBALLib, MINLPLib, and the Bonmin test set. We compare the performance of GloMIQO with respect to four state-of-the-art global optimization solvers: BARON 10.1.2, Couenne 0.4, LindoGLOBAL 6.1.1.588, and SCIP 2.1.0. Copyright Springer Science+Business Media, LLC. 2013

Suggested Citation

  • Ruth Misener & Christodoulos Floudas, 2013. "GloMIQO: Global mixed-integer quadratic optimizer," Journal of Global Optimization, Springer, vol. 57(1), pages 3-50, September.
  • Handle: RePEc:spr:jglopt:v:57:y:2013:i:1:p:3-50
    DOI: 10.1007/s10898-012-9874-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-9874-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-9874-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maranas, C. D. & Androulakis, I. P. & Floudas, C. A. & Berger, A. J. & Mulvey, J. M., 1997. "Solving long-term financial planning problems via global optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1405-1425, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santi, Éverton & Aloise, Daniel & Blanchard, Simon J., 2016. "A model for clustering data from heterogeneous dissimilarities," European Journal of Operational Research, Elsevier, vol. 253(3), pages 659-672.
    2. Emily Speakman & Jon Lee, 2018. "On branching-point selection for trilinear monomials in spatial branch-and-bound: the hull relaxation," Journal of Global Optimization, Springer, vol. 72(2), pages 129-153, October.
    3. Wei Xia & Juan C. Vera & Luis F. Zuluaga, 2020. "Globally Solving Nonconvex Quadratic Programs via Linear Integer Programming Techniques," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 40-56, January.
    4. Yanchao Liu, 2019. "A Progressive Motion-Planning Algorithm and Traffic Flow Analysis for High-Density 2D Traffic," Transportation Science, INFORMS, vol. 53(6), pages 1501-1525, November.
    5. Frank, Stephen M. & Rebennack, Steffen, 2015. "Optimal design of mixed AC–DC distribution systems for commercial buildings: A Nonconvex Generalized Benders Decomposition approach," European Journal of Operational Research, Elsevier, vol. 242(3), pages 710-729.
    6. Peter Kirst & Oliver Stein & Paul Steuermann, 2015. "Deterministic upper bounds for spatial branch-and-bound methods in global minimization with nonconvex constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 591-616, July.
    7. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    8. Timo Berthold, 2018. "A computational study of primal heuristics inside an MI(NL)P solver," Journal of Global Optimization, Springer, vol. 70(1), pages 189-206, January.
    9. Steffen Rebennack & Vitaliy Krasko, 2020. "Piecewise Linear Function Fitting via Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 507-530, April.
    10. Subramanian, Avinash S.R. & Kannan, Rohit & Holtorf, Flemming & Adams, Thomas A. & Gundersen, Truls & Barton, Paul I., 2023. "Optimization under uncertainty of a hybrid waste tire and natural gas feedstock flexible polygeneration system using a decomposition algorithm," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuichi Takano & Renata Sotirov, 2012. "A polynomial optimization approach to constant rebalanced portfolio selection," Computational Optimization and Applications, Springer, vol. 52(3), pages 645-666, July.
    2. Rong, Aiying & Lahdelma, Risto, 2007. "CO2 emissions trading planning in combined heat and power production via multi-period stochastic optimization," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1874-1895, February.
    3. Peiping Shen & Kaimin Wang & Ting Lu, 2020. "Outer space branch and bound algorithm for solving linear multiplicative programming problems," Journal of Global Optimization, Springer, vol. 78(3), pages 453-482, November.
    4. Tokat, Yesim & Rachev, Svetlozar T. & Schwartz, Eduardo, 2000. "The Stable non-Gaussian Asset Allocation: A Comparison with the Classical Gaussian Approach," University of California at Santa Barbara, Economics Working Paper Series qt9ph6b5gp, Department of Economics, UC Santa Barbara.
    5. Benati, Stefano, 2003. "The optimal portfolio problem with coherent risk measure constraints," European Journal of Operational Research, Elsevier, vol. 150(3), pages 572-584, November.
    6. Dormidontova, Yulia & Nazarov, Vladimir & A. Tikhonova, 2014. "Analysis of Approaches of Participants of Pension Products Market to the Development of Optimal Investment Strategies of Pension Savings," Published Papers r90227, Russian Presidential Academy of National Economy and Public Administration.
    7. Barbara Glensk & Reinhard Madlener, 2013. "Multi-period portfolio optimization of power generation assets," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 23(4), pages 20-38.
    8. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    9. Boddiford, Ashley N. & Kaufman, Daniel E. & Skipper, Daphne E. & Uhan, Nelson A., 2023. "Approximating a linear multiplicative objective in watershed management optimization," European Journal of Operational Research, Elsevier, vol. 305(2), pages 547-561.
    10. Gao, YueLin & Zhang, Bo, 2023. "Output-space branch-and-bound reduction algorithm for generalized linear fractional-multiplicative programming problem," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    11. Peiping Shen & Dianxiao Wu & Kaimin Wang, 2023. "Globally minimizing a class of linear multiplicative forms via simplicial branch-and-bound," Journal of Global Optimization, Springer, vol. 86(2), pages 303-321, June.
    12. Tokat, Yesim & Rachev, Svetlozar T. & Schwartz, Eduardo S., 2003. "The stable non-Gaussian asset allocation: a comparison with the classical Gaussian approach," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 937-969, April.
    13. Yuichi Takano & Jun-ya Gotoh, 2011. "Constant Rebalanced Portfolio Optimization Under Nonlinear Transaction Costs," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 18(2), pages 191-211, May.
    14. Bo Zhang & Yuelin Gao & Xia Liu & Xiaoli Huang, 2020. "Output-Space Branch-and-Bound Reduction Algorithm for a Class of Linear Multiplicative Programs," Mathematics, MDPI, vol. 8(3), pages 1-34, March.
    15. Glensk, Barbara & Madlener, Reinhard, 2011. "Dynamic Portfolio Selection Methods for Power Generation Assets," FCN Working Papers 16/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:57:y:2013:i:1:p:3-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.