IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5150825.html
   My bibliography  Save this article

Homogeneous Symmetrical Threshold Model with Nonconformity: Independence versus Anticonformity

Author

Listed:
  • Bartłomiej Nowak
  • Katarzyna Sznajd-Weron

Abstract

We study two variants of the modified Watts threshold model with a noise (with nonconformity, in the terminology of social psychology) on a complete graph. Within the first version, a noise is introduced via so-called independence, whereas in the second version anticonformity plays the role of a noise, which destroys the order. The modified Watts threshold model, studied here, is homogeneous and possesses an up-down symmetry, which makes it similar to other binary opinion models with a single-flip dynamics, such as the majority-vote and the - voter models. Because within the majority-vote model with independence only continuous phase transitions are observed, whereas within the - voter model with independence also discontinuous phase transitions are possible, we ask the question about the factor, which could be responsible for discontinuity of the order parameter. We investigate the model via the mean-field approach, which gives the exact result in the case of a complete graph, as well as via Monte Carlo simulations. Additionally, we provide a heuristic reasoning, which explains observed phenomena. We show that indeed if the threshold , which corresponds to the majority-vote model, an order-disorder transition is continuous. Moreover, results obtained for both versions of the model (one with independence and the second one with anticonformity) give the same results, only rescaled by the factor of 2. However, for the jump of the order parameter and the hysteresis is observed for the model with independence, and both versions of the model give qualitatively different results.

Suggested Citation

  • Bartłomiej Nowak & Katarzyna Sznajd-Weron, 2019. "Homogeneous Symmetrical Threshold Model with Nonconformity: Independence versus Anticonformity," Complexity, Hindawi, vol. 2019, pages 1-14, April.
  • Handle: RePEc:hin:complx:5150825
    DOI: 10.1155/2019/5150825
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/5150825.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/5150825.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/5150825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew E. Clark, 2003. "Unemployment as a Social Norm: Psychological Evidence from Panel Data," Journal of Labor Economics, University of Chicago Press, vol. 21(2), pages 289-322, April.
    2. Nyczka, Piotr & Cisło, Jerzy & Sznajd-Weron, Katarzyna, 2012. "Opinion dynamics as a movement in a bistable potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 317-327.
    3. Vieira, Allan R. & Crokidakis, Nuno, 2016. "Phase transitions in the majority-vote model with two types of noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 30-36.
    4. Byrka, Katarzyna & Jȩdrzejewski, Arkadiusz & Sznajd-Weron, Katarzyna & Weron, Rafał, 2016. "Difficulty is critical: The importance of social factors in modeling diffusion of green products and practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 723-735.
    5. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    6. Serge Galam, 2008. "Sociophysics: A Review Of Galam Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 409-440.
    7. Katarzyna Sznajd-Weron & Janusz Szwabinski & Rafal Weron & Tomasz Weron, 2013. "Rewiring the network. What helps an innovation to diffuse?," HSC Research Reports HSC/13/09, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    8. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    9. Encinas, J.M. & Chen, Hanshuang & de Oliveira, Marcelo M. & Fiore, Carlos E., 2019. "Majority vote model with ancillary noise in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 563-570.
    10. Jędrzejewski, Arkadiusz & Sznajd-Weron, Katarzyna, 2018. "Impact of memory on opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 306-315.
    11. Weron, Tomasz & Kowalska-Pyzalska, Anna & Weron, Rafał, 2018. "The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 591-600.
    12. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 441-458, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grabisch, Michel & Poindron, Alexis & Rusinowska, Agnieszka, 2019. "A model of anonymous influence with anti-conformist agents," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    2. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    3. Oestereich, A.L. & Pires, M.A. & Duarte Queirós, S.M. & Crokidakis, N., 2020. "Hysteresis and disorder-induced order in continuous kinetic-like opinion dynamics in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    4. Takamitsu Watanabe, 2020. "A numerical study on efficient jury size," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-7, December.
    5. Galam, Serge, 2021. "Will Trump win again in the 2020 election? An answer from a sociophysics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    6. Lee, Kyu-Min & Lee, Sungmin & Min, Byungjoon & Goh, K.-I., 2023. "Threshold cascade dynamics on signed random networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    7. Michel Grabisch & Fen Li, 2020. "Anti-conformism in the Threshold Model of Collective Behavior," Dynamic Games and Applications, Springer, vol. 10(2), pages 444-477, June.
    8. A. Krawiecki, 2021. "Ferromagnetic and spin-glass like transition in the q-neighbor Ising model on random graphs," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(3), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Fei & Liu, Yun & Shen, Bo & Si, Xia-Meng, 2010. "An evolutionary game theory model of binary opinion formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1745-1752.
    2. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.
    3. Muslim, Roni & Wella, Sasfan A. & Nugraha, Ahmad R.T., 2022. "Phase transition in the majority rule model with the nonconformist agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    4. Matjaž Steinbacher & Mitja Steinbacher, 2019. "Opinion Formation with Imperfect Agents as an Evolutionary Process," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 479-505, February.
    5. Oestereich, A.L. & Pires, M.A. & Duarte Queirós, S.M. & Crokidakis, N., 2020. "Hysteresis and disorder-induced order in continuous kinetic-like opinion dynamics in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    6. Francisco J. León-Medina & Jordi Tena-Sánchez & Francisco J. Miguel, 2020. "Fakers becoming believers: how opinion dynamics are shaped by preference falsification, impression management and coherence heuristics," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 385-412, April.
    7. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    8. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    9. Benjamin Cabrera & Björn Ross & Daniel Röchert & Felix Brünker & Stefan Stieglitz, 2021. "The influence of community structure on opinion expression: an agent-based model," Journal of Business Economics, Springer, vol. 91(9), pages 1331-1355, November.
    10. Qian, Shen & Liu, Yijun & Galam, Serge, 2015. "Activeness as a key to counter democratic balance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 187-196.
    11. Melatagia Yonta, Paulin & Ndoundam, René, 2009. "Opinion dynamics using majority functions," Mathematical Social Sciences, Elsevier, vol. 57(2), pages 223-244, March.
    12. Calvelli, Matheus & Crokidakis, Nuno & Penna, Thadeu J.P., 2019. "Phase transitions and universality in the Sznajd model with anticonformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 518-523.
    13. Lucas Böttcher & Hans J Herrmann & Hans Gersbach, 2018. "Clout, activists and budget: The road to presidency," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-11, March.
    14. Byrka, Katarzyna & Jȩdrzejewski, Arkadiusz & Sznajd-Weron, Katarzyna & Weron, Rafał, 2016. "Difficulty is critical: The importance of social factors in modeling diffusion of green products and practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 723-735.
    15. Oliveira, Igor V.G. & Wang, Chao & Dong, Gaogao & Du, Ruijin & Fiore, Carlos E. & Vilela, André L.M. & Stanley, H. Eugene, 2024. "Entropy production on cooperative opinion dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    16. Balankin, Alexander S. & Martínez Cruz, Miguel Ángel & Martínez, Alfredo Trejo, 2011. "Effect of initial concentration and spatial heterogeneity of active agent distribution on opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3876-3887.
    17. Martins, André C.R., 2022. "Extremism definitions in opinion dynamics models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    18. Pedraza, Lucía & Pinasco, Juan Pablo & Semeshenko, Viktoriya & Balenzuela, Pablo, 2023. "Mesoscopic analytical approach in a three state opinion model with continuous internal variable," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    19. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    20. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5150825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.