IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v516y2019icp563-570.html
   My bibliography  Save this article

Majority vote model with ancillary noise in complex networks

Author

Listed:
  • Encinas, J.M.
  • Chen, Hanshuang
  • de Oliveira, Marcelo M.
  • Fiore, Carlos E.

Abstract

We analyze the properties of the majority-vote (MV) model with an additional noise in which a local spin can be changed independently of its neighborhood. In the standard MV, one of the simplest nonequilibrium systems exhibiting an order–disorder phase transition, spins are aligned with their local majority with probability 1−f, and with complementary probability f, the majority rule is not followed. In the noisy MV (NMV), a random spin flip is succeeded with probability p (with complementary 1−p the usual MV rule is accomplished). Such extra ingredient was considered by Vieira and Crokidakis (2016) for the square lattice. Here, we generalize the NMV for arbitrary networks, including homogeneous [random regular (RR) and Erdös–Renyi (ER)] and heterogeneous [Barabasi–Albert (BA)] structures, through mean-field calculations and numerical simulations. Results coming from both approaches are in excellent agreement with each other, revealing that the presence of additional noise does not affect the classification of phase transition, which remains continuous irrespective of the network degree and its distribution. The critical point and the threshold probability pt marking the disappearance of the ordered phase depend on the node distribution and increase with the connectivity k. The critical behavior, investigated numerically, exhibits a common set of critical exponents for RR and ER topologies, but different from BA and regular lattices. Finally, our results indicate that (in contrary to a previous proposition) there is no first-order transition in the NMV for large k.

Suggested Citation

  • Encinas, J.M. & Chen, Hanshuang & de Oliveira, Marcelo M. & Fiore, Carlos E., 2019. "Majority vote model with ancillary noise in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 563-570.
  • Handle: RePEc:eee:phsmap:v:516:y:2019:i:c:p:563-570
    DOI: 10.1016/j.physa.2018.10.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118314031
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.10.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oestereich, A.L. & Pires, M.A. & Duarte Queirós, S.M. & Crokidakis, N., 2020. "Hysteresis and disorder-induced order in continuous kinetic-like opinion dynamics in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    2. Oliveira, Igor V.G. & Wang, Chao & Dong, Gaogao & Du, Ruijin & Fiore, Carlos E. & Vilela, André L.M. & Stanley, H. Eugene, 2024. "Entropy production on cooperative opinion dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Bartłomiej Nowak & Katarzyna Sznajd-Weron, 2019. "Homogeneous Symmetrical Threshold Model with Nonconformity: Independence versus Anticonformity," Complexity, Hindawi, vol. 2019, pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:516:y:2019:i:c:p:563-570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.