IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v652y2024ics037843712400551x.html
   My bibliography  Save this article

Independence role in the generalized Sznajd model

Author

Listed:
  • Azhari,
  • Muslim, Roni
  • Mulya, Didi Ahmad
  • Indrayani, Heni
  • Wicaksana, Cakra Adipura
  • Rizki, Akbar

Abstract

The Sznajd model is one of sociophysics’s well-known opinion dynamics models. Based on social validation, it has found application in diverse social systems and remains an intriguing subject of study, particularly in scenarios where interacting agents deviate from prevailing norms. This paper investigates the generalized Sznajd model, featuring independent agents on a complete graph and a two-dimensional square lattice. Agents in the network act independently with a probability p, signifying a change in their opinion or state without external influence. This model defines a paired agent size r, influencing a neighboring agent size n to adopt their opinion. This study incorporates analytical and numerical approaches, especially on the complete graph. Our results show that the macroscopic state of the system remains unaffected by the neighbor size n but is contingent solely on the number of paired agents r. Additionally, the time required to reach a stationary state is inversely proportional to the number of neighboring agents n. For the two-dimensional square lattice, two critical points p=pc emerge based on the configuration of agents. The results indicate that the universality class of the model on the complete graph aligns with the mean-field Ising universality class. Furthermore, the universality class of the model on the two-dimensional square lattice, featuring two distinct configurations, is identical and falls within the two-dimensional Ising universality class.

Suggested Citation

  • Azhari, & Muslim, Roni & Mulya, Didi Ahmad & Indrayani, Heni & Wicaksana, Cakra Adipura & Rizki, Akbar, 2024. "Independence role in the generalized Sznajd model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 652(C).
  • Handle: RePEc:eee:phsmap:v:652:y:2024:i:c:s037843712400551x
    DOI: 10.1016/j.physa.2024.130042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712400551X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nyczka, Piotr & Cisło, Jerzy & Sznajd-Weron, Katarzyna, 2012. "Opinion dynamics as a movement in a bistable potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 317-327.
    2. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    3. Galam, Serge & Jacobs, Frans, 2007. "The role of inflexible minorities in the breaking of democratic opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 366-376.
    4. Didi Ahmad Mulya & Roni Muslim, 2024. "Phase transition and universality of the majority-rule model on complex networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 35(10), pages 1-14, October.
    5. Azhari & Roni Muslim, 2023. "The external field effect on the opinion formation based on the majority rule and the q-voter models on the complete graph," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 34(07), pages 1-14, July.
    6. Serge Galam, 2008. "Sociophysics: A Review Of Galam Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 409-440.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    2. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    3. Galam, Serge, 2010. "Public debates driven by incomplete scientific data: The cases of evolution theory, global warming and H1N1 pandemic influenza," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3619-3631.
    4. Muslim, Roni & Wella, Sasfan A. & Nugraha, Ahmad R.T., 2022. "Phase transition in the majority rule model with the nonconformist agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    5. Alexis Poindron, 2019. "A general model of synchronous updating with binary opinions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02372486, HAL.
    6. Qian, Shen & Liu, Yijun & Galam, Serge, 2015. "Activeness as a key to counter democratic balance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 187-196.
    7. Bartłomiej Nowak & Katarzyna Sznajd-Weron, 2019. "Homogeneous Symmetrical Threshold Model with Nonconformity: Independence versus Anticonformity," Complexity, Hindawi, vol. 2019, pages 1-14, April.
    8. Fan, Kangqi & Pedrycz, Witold, 2015. "Emergence and spread of extremist opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 87-97.
    9. Alexis Poindron, 2019. "A general model of synchronous updating with binary opinions," Post-Print halshs-02372486, HAL.
    10. Balankin, Alexander S. & Martínez Cruz, Miguel Ángel & Martínez, Alfredo Trejo, 2011. "Effect of initial concentration and spatial heterogeneity of active agent distribution on opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3876-3887.
    11. Galam, Serge, 2011. "Collective beliefs versus individual inflexibility: The unavoidable biases of a public debate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(17), pages 3036-3054.
    12. Serge Galam & Marco Alberto Javarone, 2016. "Modeling Radicalization Phenomena in Heterogeneous Populations," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-15, May.
    13. Gaudiano, Marcos E. & Revelli, Jorge A., 2019. "Spontaneous emergence of a third position in an opinion formation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 501-511.
    14. Alexis Poindron, 2019. "A general model of synchronous updating with binary opinions," Documents de travail du Centre d'Economie de la Sorbonne 19024, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    15. Célestin Coquidé & José Lages & Dima Shepelyansky, 2024. "Opinion Formation in the World Trade Network," Post-Print hal-04461784, HAL.
    16. Serge Galam, 2016. "The invisible hand and the rational agent are behind bubbles and crashes," Papers 1601.02990, arXiv.org.
    17. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    18. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    19. Javarone, Marco Alberto, 2014. "Social influences in opinion dynamics: The role of conformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 19-30.
    20. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:652:y:2024:i:c:s037843712400551x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.