IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v608y2022ip2s0378437122008652.html
   My bibliography  Save this article

Phase transition in the majority rule model with the nonconformist agents

Author

Listed:
  • Muslim, Roni
  • Wella, Sasfan A.
  • Nugraha, Ahmad R.T.

Abstract

Independence and anticonformity are two types of social behaviors known in social psychology literature and the most studied parameters in the opinion dynamics model. These parameters are responsible for continuous (second-order) and discontinuous (first-order) phase transition phenomena. Here, we investigate the majority rule model in which the agents adopt independence and anticonformity behaviors. We define the model on several types of graphs: complete graph, two-dimensional (2D) square lattice, and one-dimensional (1D) chain. By defining p as a probability of independence (or anticonformity), we observe the model on the complete graph undergoes a continuous phase transition where the critical points are pc≈0.334 (pc≈0.667) for the model with independent (anticonformist) agents. On the 2D square lattice, the model also undergoes a continuous phase transition with critical points at pc≈0.0608 (pc≈0.4035) for the model with independent (anticonformist) agents. On the 1D chain, there is no phase transition either with independence or anticonformity. Furthermore, with the aid of finite-size scaling analysis, we obtain the same sets of critical exponents for both models involving independent and anticonformist agents on the complete graph. Therefore they are identical to the mean-field Ising model. However, in the case of the 2D square lattice, the models with independent and anticonformist agents have different sets of critical exponents and are not identical to the 2D Ising model. Our work implies that the existence of independence behavior in a society makes it more challenging to achieve consensus compared to the same society with anticonformists.

Suggested Citation

  • Muslim, Roni & Wella, Sasfan A. & Nugraha, Ahmad R.T., 2022. "Phase transition in the majority rule model with the nonconformist agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
  • Handle: RePEc:eee:phsmap:v:608:y:2022:i:p2:s0378437122008652
    DOI: 10.1016/j.physa.2022.128307
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122008652
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    2. Nyczka, Piotr & Cisło, Jerzy & Sznajd-Weron, Katarzyna, 2012. "Opinion dynamics as a movement in a bistable potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 317-327.
    3. Guillaume Deffuant & David Neau & Frederic Amblard & Gérard Weisbuch, 2000. "Mixing beliefs among interacting agents," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 87-98.
    4. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    5. Sun, Shiwen & Li, Ruiqi & Wang, Li & Xia, Chengyi, 2015. "Reduced synchronizability of dynamical scale-free networks with onion-like topologies," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 249-256.
    6. Serge Galam, 2008. "Sociophysics: A Review Of Galam Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 409-440.
    7. Roni Muslim & Rinto Anugraha & Sholihun Sholihun & Muhammad Farchani Rosyid, 2020. "Phase transition of the Sznajd model with anticonformity for two different agent configurations," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(04), pages 1-16, February.
    8. Amblard, Frédéric & Deffuant, Guillaume, 2004. "The role of network topology on extremism propagation with the relative agreement opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 725-738.
    9. Calvelli, Matheus & Crokidakis, Nuno & Penna, Thadeu J.P., 2019. "Phase transitions and universality in the Sznajd model with anticonformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 518-523.
    10. Roni Muslim & Rinto Anugraha & Sholihun Sholihun & Muhammad Farchani Rosyid, 2021. "Phase transition and universality of the three-one spin interaction based on the majority-rule model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 32(09), pages 1-12, September.
    11. Biswas, Soumyajyoti & Chatterjee, Arnab & Sen, Parongama, 2012. "Disorder induced phase transition in kinetic models of opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3257-3265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muslim, Roni & NQZ, Rinto Anugraha & Khalif, Muhammad Ardhi, 2024. "Mass media and its impact on opinion dynamics of the nonlinear q-voter model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calvelli, Matheus & Crokidakis, Nuno & Penna, Thadeu J.P., 2019. "Phase transitions and universality in the Sznajd model with anticonformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 518-523.
    2. Pedraza, Lucía & Pinasco, Juan Pablo & Semeshenko, Viktoriya & Balenzuela, Pablo, 2023. "Mesoscopic analytical approach in a three state opinion model with continuous internal variable," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    4. Qian, Shen & Liu, Yijun & Galam, Serge, 2015. "Activeness as a key to counter democratic balance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 187-196.
    5. Maciel, Marcelo V. & Martins, André C.R., 2020. "Ideologically motivated biases in a multiple issues opinion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    6. Martins, André C.R., 2022. "Extremism definitions in opinion dynamics models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    7. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    8. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.
    9. Kurmyshev, Evguenii & Juárez, Héctor A. & González-Silva, Ricardo A., 2011. "Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2945-2955.
    10. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    11. Bartłomiej Nowak & Katarzyna Sznajd-Weron, 2019. "Homogeneous Symmetrical Threshold Model with Nonconformity: Independence versus Anticonformity," Complexity, Hindawi, vol. 2019, pages 1-14, April.
    12. Fan, Kangqi & Pedrycz, Witold, 2015. "Emergence and spread of extremist opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 87-97.
    13. Sznajd-Weron, Katarzyna & Sznajd, Józef & Weron, Tomasz, 2021. "A review on the Sznajd model — 20 years after," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    14. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    15. Célestin Coquidé & José Lages & Dima Shepelyansky, 2024. "Opinion Formation in the World Trade Network," Post-Print hal-04461784, HAL.
    16. Karataieva, Tatiana & Koshmanenko, Volodymyr & Krawczyk, Małgorzata J. & Kułakowski, Krzysztof, 2019. "Mean field model of a game for power," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 535-547.
    17. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    18. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    19. Benjamin Cabrera & Björn Ross & Daniel Röchert & Felix Brünker & Stefan Stieglitz, 2021. "The influence of community structure on opinion expression: an agent-based model," Journal of Business Economics, Springer, vol. 91(9), pages 1331-1355, November.
    20. Mukherjee, Sudip & Biswas, Soumyajyoti & Chatterjee, Arnab & Chakrabarti, Bikas K., 2021. "The Ising universality class of kinetic exchange models of opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:608:y:2022:i:p2:s0378437122008652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.