IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4031795.html
   My bibliography  Save this article

Research on Novel Bearing Fault Diagnosis Method Based on Improved Krill Herd Algorithm and Kernel Extreme Learning Machine

Author

Listed:
  • Zhijian Wang
  • Likang Zheng
  • Junyuan Wang
  • Wenhua Du

Abstract

In this paper, a novel bearing intelligent fault diagnosis method based on a novel krill herd algorithm (NKH) and kernel extreme learning machine (KELM) is proposed. Firstly, multiscale dispersion entropy (MDE) is used to extract fault features of bearings to obtain a set of fault feature vectors composed of dispersion entropy. Then, it is imported into the kernel extreme learning machine for fault diagnosis. But considering the kernel function parameters and the error penalty factor will affect the classification accuracy of the kernel extreme learning machine, this paper uses the novel krill herd algorithm (NKH) for their optimization. The opposite populations are added to the NKH in the initialization of population to improve its speed and prevent local optimum, and during the period of looking for the optimal solution, the impulse operator is introduced to ensure it has enough impulse to rush out of the local optimal once into the local optimum. Finally, in order to verify the effectiveness of the proposed method, it was applied to the bearing fault experiment of Case Western Reserve University and XJTU-SY bearing data set. The results show that the proposed method not only has good fault diagnosis performance and generalization but also has fast convergence speed and does not easily fall into the local optimum. Therefore, this paper provides a method for fault diagnosis under different loads. Meanwhile, the new method (NKH-KELM) is compared and analyzed with other mainstream intelligent bearing fault diagnosis methods to verify the effectiveness and accuracy of the proposed method.

Suggested Citation

  • Zhijian Wang & Likang Zheng & Junyuan Wang & Wenhua Du, 2019. "Research on Novel Bearing Fault Diagnosis Method Based on Improved Krill Herd Algorithm and Kernel Extreme Learning Machine," Complexity, Hindawi, vol. 2019, pages 1-19, November.
  • Handle: RePEc:hin:complx:4031795
    DOI: 10.1155/2019/4031795
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/4031795.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/4031795.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/4031795?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhijian Wang & Junyuan Wang & Wenan Cai & Jie Zhou & Wenhua Du & Jingtai Wang & Gaofeng He & Huihui He, 2019. "Application of an Improved Ensemble Local Mean Decomposition Method for Gearbox Composite Fault Diagnosis," Complexity, Hindawi, vol. 2019, pages 1-17, May.
    2. Zhijian Wang & Likang Zheng & Wenhua Du & Wenan Cai & Jie Zhou & Jingtai Wang & Xiaofeng Han & Gaofeng He, 2019. "A Novel Method for Intelligent Fault Diagnosis of Bearing Based on Capsule Neural Network," Complexity, Hindawi, vol. 2019, pages 1-17, June.
    3. Das, Smruti Rekha & Kuhoo, & Mishra, Debahuti & Rout, Minakhi, 2019. "An optimized feature reduction based currency forecasting model exploring the online sequential extreme learning machine and krill herd strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 339-370.
    4. Kim, Ji-Hyun, 2009. "Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3735-3745, September.
    5. Hayfaa Abdulzahra Atee & Robiah Ahmad & Norliza Mohd Noor & Abdul Monem S Rahma & Yazan Aljeroudi, 2017. "Extreme learning machine based optimal embedding location finder for image steganography," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Wanqing & Cattani, Carlo & Chi, Chi-Hung, 2020. "Multifractional Brownian motion and quantum-behaved particle swarm optimization for short term power load forecasting: An integrated approach," Energy, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Airola, Antti & Pahikkala, Tapio & Waegeman, Willem & De Baets, Bernard & Salakoski, Tapio, 2011. "An experimental comparison of cross-validation techniques for estimating the area under the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1828-1844, April.
    2. John J Nay & Yevgeniy Vorobeychik, 2016. "Predicting Human Cooperation," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    3. Kazim Topuz & Behrooz Davazdahemami & Dursun Delen, 2024. "A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases," Annals of Operations Research, Springer, vol. 341(1), pages 673-697, October.
    4. Zhijian Wang & Likang Zheng & Wenhua Du & Wenan Cai & Jie Zhou & Jingtai Wang & Xiaofeng Han & Gaofeng He, 2019. "A Novel Method for Intelligent Fault Diagnosis of Bearing Based on Capsule Neural Network," Complexity, Hindawi, vol. 2019, pages 1-17, June.
    5. Matthew Tuson & Berwin Turlach & Kevin Murray & Mei Ruu Kok & Alistair Vickery & David Whyatt, 2021. "Predicting Future Geographic Hotspots of Potentially Preventable Hospitalisations Using All Subset Model Selection and Repeated K-Fold Cross-Validation," IJERPH, MDPI, vol. 18(19), pages 1-21, September.
    6. David Alaminos & M. Belén Salas & Manuel Á. Fernández-Gámez, 2023. "Quantum Monte Carlo simulations for estimating FOREX markets: a speculative attacks experience," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-21, December.
    7. Gonzalo Perez-de-la-Cruz & Guillermina Eslava-Gomez, 2019. "Discriminant analysis for discrete variables derived from a tree-structured graphical model," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 855-876, December.
    8. I. Charvet & A. Suppasri & H. Kimura & D. Sugawara & F. Imamura, 2015. "A multivariate generalized linear tsunami fragility model for Kesennuma City based on maximum flow depths, velocities and debris impact, with evaluation of predictive accuracy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 2073-2099, December.
    9. Qianying Jin & Kristiaan Kerstens & Ignace Van de Woestyne, 2024. "Convex and nonconvex nonparametric frontier-based classification methods for anomaly detection," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1213-1239, December.
    10. Khan, Jafar A. & Van Aelst, Stefan & Zamar, Ruben H., 2010. "Fast robust estimation of prediction error based on resampling," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3121-3130, December.
    11. Mark Lown & Michael Brown & Chloë Brown & Arthur M Yue & Benoy N Shah & Simon J Corbett & George Lewith & Beth Stuart & Michael Moore & Paul Little, 2020. "Machine learning detection of Atrial Fibrillation using wearable technology," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-9, January.
    12. Piccarreta, Raffaella, 2010. "Binary trees for dissimilarity data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1516-1524, June.
    13. Ha, Tran Vinh & Asada, Takumi & Arimura, Mikiharu, 2019. "Determination of the influence factors on household vehicle ownership patterns in Phnom Penh using statistical and machine learning methods," Journal of Transport Geography, Elsevier, vol. 78(C), pages 70-86.
    14. Zhengnan Huang & Hongjiu Zhang & Jonathan Boss & Stephen A Goutman & Bhramar Mukherjee & Ivo D Dinov & Yuanfang Guan & for the Pooled Resource Open-Access ALS Clinical Trials Consortium, 2017. "Complete hazard ranking to analyze right-censored data: An ALS survival study," PLOS Computational Biology, Public Library of Science, vol. 13(12), pages 1-21, December.
    15. Xue, Jing-Hao & Titterington, D. Michael, 2010. "On the generative-discriminative tradeoff approach: Interpretation, asymptotic efficiency and classification performance," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 438-451, February.
    16. Gianluca Gazzola & Myong K. Jeong, 2021. "Support vector regression for polyhedral and missing data," Annals of Operations Research, Springer, vol. 303(1), pages 483-506, August.
    17. Ayed Alwadain & Rao Faizan Ali & Amgad Muneer, 2023. "Estimating Financial Fraud through Transaction-Level Features and Machine Learning," Mathematics, MDPI, vol. 11(5), pages 1-15, February.
    18. John J. Nay & Yevgeniy Vorobeychik, 2016. "Predicting Human Cooperation," Papers 1601.07792, arXiv.org, revised Apr 2016.
    19. Shusaku Tsumoto & Tomohiro Kimura & Shoji Hirano, 2022. "Expectation–Maximization (EM) Clustering as a Preprocessing Method for Clinical Pathway Mining," The Review of Socionetwork Strategies, Springer, vol. 16(1), pages 25-52, April.
    20. Zachary K. Collier & Haobai Zhang & Bridgette Johnson, 2021. "Finite Mixture Modeling for Program Evaluation: Resampling and Pre-processing Approaches," Evaluation Review, , vol. 45(6), pages 309-333, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4031795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.