IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1564243.html
   My bibliography  Save this article

Application of an Improved Ensemble Local Mean Decomposition Method for Gearbox Composite Fault Diagnosis

Author

Listed:
  • Zhijian Wang
  • Junyuan Wang
  • Wenan Cai
  • Jie Zhou
  • Wenhua Du
  • Jingtai Wang
  • Gaofeng He
  • Huihui He

Abstract

In industrial production, it is highly essential to extract faults in gearbox accurately. Specifically, in a strong noise environment, it is difficult to extract the fault features accurately. LMD (local mean decomposition) is widely used as an adaptive decomposition method in fault diagnosis. In order to improve the mode mixing of LMD, ELMD (ensemble Local Mean Decomposition) is proposed as local mode mixing exists in noisy environment, but white noise added in ELMD cannot be completely neutralized leading to the influence of increased white noise on PF (product function) component. This further leads to the increase in reconstruction errors. Therefore, this paper proposes a composite fault diagnosis method for gearboxes based on an improved ensemble local mean decomposition. The idea is to add white noise in pairs to optimize ELMD, defined as CELMD (Complementary Ensemble Local Mean Decomposition) then remove the decomposed high noise component by PE (Permutation Entropy) while applying the SG (Savitzky-Golay) filter to smooth out the low noise in PFs. The method is applied to both simulated signal and experimental signal, which overcomes mode mixing phenomenon and reduces reconstruction error. At the same time, this method avoids the occurrence of pseudocomponents and reduces the amount of calculation. Compared with LMD, ELMD, CELMD, and CELMDAN, it shows that improved ensemble local mean decomposition method is an effective method for extracting composite fault features.

Suggested Citation

  • Zhijian Wang & Junyuan Wang & Wenan Cai & Jie Zhou & Wenhua Du & Jingtai Wang & Gaofeng He & Huihui He, 2019. "Application of an Improved Ensemble Local Mean Decomposition Method for Gearbox Composite Fault Diagnosis," Complexity, Hindawi, vol. 2019, pages 1-17, May.
  • Handle: RePEc:hin:complx:1564243
    DOI: 10.1155/2019/1564243
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/1564243.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/1564243.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/1564243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Li & Fan Li & Rong Jia & Fang Zhai & Liang Bai & Xingqi Luo, 2021. "Research on the Fault Feature Extraction of Rolling Bearings Based on SGMD-CS and the AdaBoost Framework," Energies, MDPI, vol. 14(6), pages 1-19, March.
    2. Zhijian Wang & Likang Zheng & Junyuan Wang & Wenhua Du, 2019. "Research on Novel Bearing Fault Diagnosis Method Based on Improved Krill Herd Algorithm and Kernel Extreme Learning Machine," Complexity, Hindawi, vol. 2019, pages 1-19, November.
    3. Zhijian Wang & Likang Zheng & Wenhua Du & Wenan Cai & Jie Zhou & Jingtai Wang & Xiaofeng Han & Gaofeng He, 2019. "A Novel Method for Intelligent Fault Diagnosis of Bearing Based on Capsule Neural Network," Complexity, Hindawi, vol. 2019, pages 1-17, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1564243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.