IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v46y2024i4d10.1007_s00291-024-00751-5.html
   My bibliography  Save this article

Convex and nonconvex nonparametric frontier-based classification methods for anomaly detection

Author

Listed:
  • Qianying Jin

    (Nanjing University of Aeronautics and Astronautics)

  • Kristiaan Kerstens

    (UMR 9221 - LEM - Lille Économie Management)

  • Ignace Van de Woestyne

    (Brussels Campus)

Abstract

Effective methods for determining the boundary of the normal class are very useful for detecting anomalies in commercial or security applications—a problem known as anomaly detection. This contribution proposes a nonparametric frontier-based classification (NPFC) method for anomaly detection. By relaxing the commonly used convexity assumption in the literature, a nonconvex-NPFC method is constructed and the nonconvex nonparametric frontier turns out to provide a more conservative boundary enveloping the normal class. By reflecting on the monotonic relation between the characteristic variables and the membership, the proposed NPFC method is in a more general form since both input-like and output-like characteristic variables are incorporated. In addition, by allowing some of the training observations to be misclassified, the convex- and nonconvex-NPFC methods are extended from a hard nonparametric frontier to a soft one, which also provides a more conservative boundary enclosing the normal class. Both simulation studies and a real-life data set are used to evaluate and compare the proposed NPFC methods to some well-established methods in the literature. The results show that the proposed NPFC methods have competitive classification performance and have consistent advantages in detecting abnormal samples, especially the nonconvex-NPFC methods.

Suggested Citation

  • Qianying Jin & Kristiaan Kerstens & Ignace Van de Woestyne, 2024. "Convex and nonconvex nonparametric frontier-based classification methods for anomaly detection," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1213-1239, December.
  • Handle: RePEc:spr:orspec:v:46:y:2024:i:4:d:10.1007_s00291-024-00751-5
    DOI: 10.1007/s00291-024-00751-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-024-00751-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-024-00751-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chiwoo Park & Jianhua Z. Huang & Yu Ding, 2010. "A Computable Plug-In Estimator of Minimum Volume Sets for Novelty Detection," Operations Research, INFORMS, vol. 58(5), pages 1469-1480, October.
    2. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    3. W. Briec, 1997. "A Graph-Type Extension of Farrell Technical Efficiency Measure," Journal of Productivity Analysis, Springer, vol. 8(1), pages 95-110, March.
    4. K Kerstens & I Van de Woestyne, 2011. "Negative data in DEA: a simple proportional distance function approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1413-1419, July.
    5. Pendharkar, Parag C., 2002. "A potential use of data envelopment analysis for the inverse classification problem," Omega, Elsevier, vol. 30(3), pages 243-248, June.
    6. Sueyoshi, Toshiyuki, 2006. "DEA-Discriminant Analysis: Methodological comparison among eight discriminant analysis approaches," European Journal of Operational Research, Elsevier, vol. 169(1), pages 247-272, February.
    7. C F Leon & F Palacios, 2009. "Evaluation of rejected cases in an acceptance system with data envelopment analysis and goal programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(10), pages 1411-1420, October.
    8. Lovell, C. A. Knox & Pastor, Jesus T., 1999. "Radial DEA models without inputs or without outputs," European Journal of Operational Research, Elsevier, vol. 118(1), pages 46-51, October.
    9. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    10. Valero-Carreras, Daniel & Aparicio, Juan & Guerrero, Nadia M., 2021. "Support vector frontiers: A new approach for estimating production functions through support vector machines," Omega, Elsevier, vol. 104(C).
    11. Laurens Cherchye & Timo Kuosmanen & Thierry Post, 2001. "FDH Directional Distance Functions with an Application to European Commercial Banks," Journal of Productivity Analysis, Springer, vol. 15(3), pages 201-215, January.
    12. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    13. Juan Aparicio & Miriam Esteve & Jesus J. Rodriguez-Sala & Jose L. Zofio, 2021. "The Estimation of Productive Efficiency Through Machine Learning Techniques: Efficiency Analysis Trees," International Series in Operations Research & Management Science, in: Joe Zhu & Vincent Charles (ed.), Data-Enabled Analytics, pages 51-92, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravelojaona, Paola, 2019. "On constant elasticity of substitution – Constant elasticity of transformation Directional Distance Functions," European Journal of Operational Research, Elsevier, vol. 272(2), pages 780-791.
    2. Mahmood Mehdiloo & Jafar Sadeghi & Kristiaan Kerstens, 2024. "Top Down Axiomatic Modeling of Metatechnologies and Evaluating Directional Economic Efficiency," Working Papers 2024-EQM-03, IESEG School of Management.
    3. Halická, Margaréta & Trnovská, Mária & Černý, Aleš, 2024. "A unified approach to radial, hyperbolic, and directional efficiency measurement in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 312(1), pages 298-314.
    4. Aparicio, Juan & Pastor, Jesus T. & Vidal, Fernando, 2016. "The directional distance function and the translation invariance property," Omega, Elsevier, vol. 58(C), pages 1-3.
    5. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    6. Bogetoft, Peter & Leth Hougaard, Jens, 2004. "Super efficiency evaluations based on potential slack," European Journal of Operational Research, Elsevier, vol. 152(1), pages 14-21, January.
    7. Cherchye, L. & Post, G.T., 2001. "Methodological Advances in Dea," ERIM Report Series Research in Management ERS-2001-53-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. J.Ph. Boussemart & K. Kerstens & S. Blancard & W. Briec, 2007. "Technology Adoption in French Agriculture and the role of Financial Constraints," Post-Print hal-00287974, HAL.
    9. Pastor, Jesus T. & Lovell, C.A. Knox & Aparicio, Juan, 2020. "Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index," European Journal of Operational Research, Elsevier, vol. 281(1), pages 222-230.
    10. Jean-Philippe Boussemart & Walter Briec & Christophe Tavera, 2011. "More evidence on technological catching-up in the manufacturing sector," Applied Economics, Taylor & Francis Journals, vol. 43(18), pages 2321-2330.
    11. H Leleu, 2009. "Mixing DEA and FDH models together," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1730-1737, December.
    12. A. Abad & P. Ravelojaona, 2017. "Exponential environmental productivity index and indicators," Journal of Productivity Analysis, Springer, vol. 48(2), pages 147-166, December.
    13. Macedo, Pedro & Scotto, Manuel, 2014. "Cross-entropy estimation in technical efficiency analysis," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 124-130.
    14. Camanho, Ana Santos & Silva, Maria Conceicao & Piran, Fabio Sartori & Lacerda, Daniel Pacheco, 2024. "A literature review of economic efficiency assessments using Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 315(1), pages 1-18.
    15. Maryam Hasannasab & Dimitris Margaritis & Christos Staikouras, 2019. "The financial crisis and the shadow price of bank capital," Annals of Operations Research, Springer, vol. 282(1), pages 131-154, November.
    16. Jean-Pascal Guironnet & Nicolas Peypoch, 2005. "Human Capital Allocation and Overeducation: A Measure of French Productivity," Working Papers 05-10, LAMETA, Universtiy of Montpellier, revised Oct 2005.
    17. W. Briec & K. Kerstens, 2009. "Infeasibility and Directional Distance Functions with Application to the Determinateness of the Luenberger Productivity Indicator," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 55-73, April.
    18. Jean‐Philippe Boussemart & Walter Briec & Kristiaan Kerstens & Jean‐Christophe Poutineau, 2003. "Luenberger and Malmquist Productivity Indices: Theoretical Comparisons and Empirical Illustration," Bulletin of Economic Research, Wiley Blackwell, vol. 55(4), pages 391-405, October.
    19. Cinzia Daraio & Léopold Simar, 2016. "Efficiency and benchmarking with directional distances: a data-driven approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(7), pages 928-944, July.
    20. Mahlberg, Bernhard & Sahoo, Biresh K., 2011. "Radial and non-radial decompositions of Luenberger productivity indicator with an illustrative application," International Journal of Production Economics, Elsevier, vol. 131(2), pages 721-726, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:46:y:2024:i:4:d:10.1007_s00291-024-00751-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.