IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1601.07792.html
   My bibliography  Save this paper

Predicting Human Cooperation

Author

Listed:
  • John J. Nay
  • Yevgeniy Vorobeychik

Abstract

The Prisoner's Dilemma has been a subject of extensive research due to its importance in understanding the ever-present tension between individual self-interest and social benefit. A strictly dominant strategy in a Prisoner's Dilemma (defection), when played by both players, is mutually harmful. Repetition of the Prisoner's Dilemma can give rise to cooperation as an equilibrium, but defection is as well, and this ambiguity is difficult to resolve. The numerous behavioral experiments investigating the Prisoner's Dilemma highlight that players often cooperate, but the level of cooperation varies significantly with the specifics of the experimental predicament. We present the first computational model of human behavior in repeated Prisoner's Dilemma games that unifies the diversity of experimental observations in a systematic and quantitatively reliable manner. Our model relies on data we integrated from many experiments, comprising 168,386 individual decisions. The computational model is composed of two pieces: the first predicts the first-period action using solely the structural game parameters, while the second predicts dynamic actions using both game parameters and history of play. Our model is extremely successful not merely at fitting the data, but in predicting behavior at multiple scales in experimental designs not used for calibration, using only information about the game structure. We demonstrate the power of our approach through a simulation analysis revealing how to best promote human cooperation.

Suggested Citation

  • John J. Nay & Yevgeniy Vorobeychik, 2016. "Predicting Human Cooperation," Papers 1601.07792, arXiv.org, revised Apr 2016.
  • Handle: RePEc:arx:papers:1601.07792
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1601.07792
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jasmina Arifovic & John Ledyard, 2012. "Individual Evolutionary Learning, Other-regarding Preferences, and the Voluntary Contributions Mechanism," Discussion Papers wp12-01, Department of Economics, Simon Fraser University.
    2. Drew Fudenberg & David G. Rand & Anna Dreber, 2012. "Slow to Anger and Fast to Forgive: Cooperation in an Uncertain World," American Economic Review, American Economic Association, vol. 102(2), pages 720-749, April.
    3. Andreoni James & Miller John H., 1995. "Auctions with Artificial Adaptive Agents," Games and Economic Behavior, Elsevier, vol. 10(1), pages 39-64, July.
    4. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    5. Yoella Bereby-Meyer & Alvin E. Roth, 2006. "The Speed of Learning in Noisy Games: Partial Reinforcement and the Sustainability of Cooperation," American Economic Review, American Economic Association, vol. 96(4), pages 1029-1042, September.
    6. Jan C. Thiele & Winfried Kurth & Volker Grimm, 2014. "Facilitating Parameter Estimation and Sensitivity Analysis of Agent-Based Models: A Cookbook Using NetLogo and 'R'," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 17(3), pages 1-11.
    7. Kim, Ji-Hyun, 2009. "Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3735-3745, September.
    8. Arifovic, Jasmina & Ledyard, John, 2012. "Individual evolutionary learning, other-regarding preferences, and the voluntary contributions mechanism," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 808-823.
    9. Andreoni, James A & Miller, John H, 1993. "Rational Cooperation in the Finitely Repeated Prisoner's Dilemma: Experimental Evidence," Economic Journal, Royal Economic Society, vol. 103(418), pages 570-585, May.
    10. Wendel, Stephen & Oppenheimer, Joe, 2010. "An agent-based analysis of context-dependent preferences," Journal of Economic Psychology, Elsevier, vol. 31(3), pages 269-284, June.
    11. Marks, Robert, 2006. "Market Design Using Agent-Based Models," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 27, pages 1339-1380, Elsevier.
    12. John Bower & Derek W. Bunn, 2000. "Model-Based Comparisons of Pool and Bilateral Markets for Electricity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-29.
    13. repec:cup:judgdm:v:4:y:2009:i:5:p:363-384 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John J Nay & Yevgeniy Vorobeychik, 2016. "Predicting Human Cooperation," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    2. Daley, Brendan & Sadowski, Philipp, 2017. "Magical thinking: A representation result," Theoretical Economics, Econometric Society, vol. 12(2), May.
    3. Lin-Ju Chen & Lei Zhu & Ying Fan & Sheng-Hua Cai, 2013. "Long-Term Impacts of Carbon Tax and Feed-in Tariff Policies on China's Generating Portfolio and Carbon Emissions: A Multi-Agent-Based Analysis," Energy & Environment, , vol. 24(7-8), pages 1271-1293, December.
    4. Albert Banal-Estañol & Augusto Rupérez-Micola, 2010. "Are agent-based simulations robust? The wholesale electricity trading case," Economics Working Papers 1214, Department of Economics and Business, Universitat Pompeu Fabra.
    5. Lugovskyy, Volodymyr & Puzzello, Daniela & Sorensen, Andrea & Walker, James & Williams, Arlington, 2017. "An experimental study of finitely and infinitely repeated linear public goods games," Games and Economic Behavior, Elsevier, vol. 102(C), pages 286-302.
    6. Banal-Estañol, Albert & Rupérez Micola, Augusto, 2011. "Behavioural simulations in spot electricity markets," European Journal of Operational Research, Elsevier, vol. 214(1), pages 147-159, October.
    7. Todd Guilfoos & Andreas Pape, 2016. "Predicting human cooperation in the Prisoner’s Dilemma using case-based decision theory," Theory and Decision, Springer, vol. 80(1), pages 1-32, January.
    8. Anujit Chakraborty, 2022. "Motives Behind Cooperation in Finitely Repeated Prisoner's Dilemma," Working Papers 353, University of California, Davis, Department of Economics.
    9. Adrien Querbes, 2018. "Banned from the sharing economy: an agent-based model of a peer-to-peer marketplace for consumer goods and services," Journal of Evolutionary Economics, Springer, vol. 28(3), pages 633-665, August.
    10. Robert S. Gibbons & Manuel Grieder & Holger Herz & Christian Zehnder, 2019. "Building an Equilibrium: Rules Versus Principles in Relational Contracts," CESifo Working Paper Series 7871, CESifo.
    11. Johnsen, Åshild A. & Kvaløy, Ola, 2021. "Conspiracy against the public - An experiment on collusion11“People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the publ," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 94(C).
    12. Billur Aksoy & Silvana Krasteva, 2020. "When does less information translate into more giving to public goods?," Experimental Economics, Springer;Economic Science Association, vol. 23(4), pages 1148-1177, December.
    13. Rich, Karl M. & Ross, R. Brent & Baker, A. Derek & Negassa, Asfaw, 2011. "Quantifying value chain analysis in the context of livestock systems in developing countries," Food Policy, Elsevier, vol. 36(2), pages 214-222, April.
    14. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    15. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    16. Proto, Eugenio & Rustichini, Aldo & Sofianos, Andis, 2014. "Higher Intelligence Groups Have Higher Cooperation Rates in the Repeated Prisoner's Dilemma," IZA Discussion Papers 8499, Institute of Labor Economics (IZA).
    17. Ghidoni, Riccardo & Calzolari, Giacomo & Casari, Marco, 2017. "Climate change: Behavioral responses from extreme events and delayed damages," Energy Economics, Elsevier, vol. 68(S1), pages 103-115.
    18. Martin Brown & Jan Schmitz & Christian Zehnder, 2023. "Moral Constraints, Social Norm Enforcement and Strategic Default in Weak and Strong Economic Conditions," Working Papers 23.03, Swiss National Bank, Study Center Gerzensee.
    19. Kartal, Melis & Müller, Wieland & Tremewan, James, 2021. "Building trust: The costs and benefits of gradualism," Games and Economic Behavior, Elsevier, vol. 130(C), pages 258-275.
    20. Anna Conte & M. Vittoria Levati & Natalia Montinari, 2019. "Experience in public goods experiments," Theory and Decision, Springer, vol. 86(1), pages 65-93, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1601.07792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.