IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v79y2015i3p2073-2099.html
   My bibliography  Save this article

A multivariate generalized linear tsunami fragility model for Kesennuma City based on maximum flow depths, velocities and debris impact, with evaluation of predictive accuracy

Author

Listed:
  • I. Charvet
  • A. Suppasri
  • H. Kimura
  • D. Sugawara
  • F. Imamura

Abstract

The recent losses caused by the unprecedented 2011 Great East Japan Tsunami disaster have stimulated further research efforts, notably in the mechanisms and probabilistic determination of tsunami-induced damage, in order to provide the necessary information for future risk assessment and mitigation. The stochastic approach typically adopts fragility functions, which express the probability that a building will reach or exceed a predefined damage level usually for one, sometimes several measures of tsunami intensity. However, improvements in the derivation of fragility functions are still needed in order to yield reliable predictions of tsunami damage to buildings. In particular, extensive disaggregated databases, as well as measures of tsunami intensity beyond the commonly used tsunami flow depth should be used to potentially capture variations in the data which have not been explained by previous models. This study proposes to derive fragility functions with additional intensity measures for the city of Kesennuma, which was extensively damaged during the 2011 tsunami and for which a large and disaggregated dataset of building damage is available. In addition to the surveyed tsunami flow depth, the numerically estimated flow velocities as well as a binary indicator of debris impact are included in the model and used simultaneously to estimate building damage probabilities. Following the recently proposed methodology for fragility estimation based on generalized linear models, which overcomes the shortcomings of classic linear regression in fragility analyses, ordinal regression is applied and the reliability of the model estimates is assessed using a proposed penalized accuracy measure, more suitable than the traditional classification error rate for ordinal models. In order to assess the predictive power of the model, penalized accuracy is estimated through a repeated tenfold cross-validation scheme. For the first time, multivariate tsunami fragility functions are derived and represented in the form of fragility surfaces. The results show that the model is able to predict tsunami damage with satisfactory predictive accuracy and that debris impact is a crucial factor in the determination of building collapse probabilities. Copyright The Author(s) 2015

Suggested Citation

  • I. Charvet & A. Suppasri & H. Kimura & D. Sugawara & F. Imamura, 2015. "A multivariate generalized linear tsunami fragility model for Kesennuma City based on maximum flow depths, velocities and debris impact, with evaluation of predictive accuracy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 2073-2099, December.
  • Handle: RePEc:spr:nathaz:v:79:y:2015:i:3:p:2073-2099
    DOI: 10.1007/s11069-015-1947-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1947-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1947-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Rossetto & N. Peiris & A. Pomonis & S. Wilkinson & D. Re & R. Koo & S. Gallocher, 2007. "The Indian Ocean tsunami of December 26, 2004: observations in Sri Lanka and Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(1), pages 105-124, July.
    2. Kim, Ji-Hyun, 2009. "Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3735-3745, September.
    3. Natt Leelawat & Anawat Suppasri & Ingrid Charvet & Fumihiko Imamura, 2014. "Building damage from the 2011 Great East Japan tsunami: quantitative assessment of influential factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 449-471, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teresa Vera San Martín & Gary Rodriguez Rosado & Patricia Arreaga Vargas & Leonardo Gutierrez, 2018. "Population and building vulnerability assessment by possible worst-case tsunami scenarios in Salinas, Ecuador," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 275-297, August.
    2. James H. Williams & Thomas M. Wilson & Nick Horspool & Emily M. Lane & Matthew W. Hughes & Tim Davies & Lina Le & Finn Scheele, 2019. "Tsunami impact assessment: development of vulnerability matrix for critical infrastructure and application to Christchurch, New Zealand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1167-1211, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    2. Mark G E White & Neil E Bezodis & Jonathon Neville & Huw Summers & Paul Rees, 2022. "Determining jumping performance from a single body-worn accelerometer using machine learning," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-25, February.
    3. Richard A. Johansen & Molly K. Reif & Christina L. Saltus & Kaytee L. Pokrzywinski, 2024. "A Broadscale Assessment of Sentinel-2 Imagery and the Google Earth Engine for the Nationwide Mapping of Chlorophyll a," Sustainability, MDPI, vol. 16(5), pages 1-17, March.
    4. Norio Tanaka & Junji Yagisawa & Satoshi Yasuda, 2013. "Breaking pattern and critical breaking condition of Japanese pine trees on coastal sand dunes in huge tsunami caused by Great East Japan Earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 423-442, January.
    5. Airola, Antti & Pahikkala, Tapio & Waegeman, Willem & De Baets, Bernard & Salakoski, Tapio, 2011. "An experimental comparison of cross-validation techniques for estimating the area under the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1828-1844, April.
    6. Matthias Schmid & Thomas Hielscher & Thomas Augustin & Olaf Gefeller, 2011. "A Robust Alternative to the Schemper–Henderson Estimator of Prediction Error," Biometrics, The International Biometric Society, vol. 67(2), pages 524-535, June.
    7. Luts, Jan & Ormerod, John T., 2014. "Mean field variational Bayesian inference for support vector machine classification," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 163-176.
    8. David Rios Insua & Roi Naveiro & Victor Gallego, 2020. "Perspectives on Adversarial Classification," Mathematics, MDPI, vol. 8(11), pages 1-21, November.
    9. Dietrichson, Jens & Klokker, Rasmus H., 2024. "Predicting preschool problems," Children and Youth Services Review, Elsevier, vol. 161(C).
    10. John J Nay & Yevgeniy Vorobeychik, 2016. "Predicting Human Cooperation," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    11. Kazim Topuz & Behrooz Davazdahemami & Dursun Delen, 2024. "A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases," Annals of Operations Research, Springer, vol. 341(1), pages 673-697, October.
    12. Matthew Tuson & Berwin Turlach & Kevin Murray & Mei Ruu Kok & Alistair Vickery & David Whyatt, 2021. "Predicting Future Geographic Hotspots of Potentially Preventable Hospitalisations Using All Subset Model Selection and Repeated K-Fold Cross-Validation," IJERPH, MDPI, vol. 18(19), pages 1-21, September.
    13. Teresa Vera San Martín & Gary Rodriguez Rosado & Patricia Arreaga Vargas & Leonardo Gutierrez, 2018. "Population and building vulnerability assessment by possible worst-case tsunami scenarios in Salinas, Ecuador," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 275-297, August.
    14. Lauri Nevasalmi, 2022. "Recession forecasting with high‐dimensional data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 752-764, July.
    15. Usta, Ilhan & Kantar, Yeliz Mert, 2011. "On the performance of the flexible maximum entropy distributions within partially adaptive estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2172-2182, June.
    16. Hosseini, Fatemeh & Eidsvik, Jo & Mohammadzadeh, Mohsen, 2011. "Approximate Bayesian inference in spatial GLMM with skew normal latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1791-1806, April.
    17. Qianying Jin & Kristiaan Kerstens & Ignace Van de Woestyne, 2024. "Convex and nonconvex nonparametric frontier-based classification methods for anomaly detection," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1213-1239, December.
    18. Gonzalo Perez-de-la-Cruz & Guillermina Eslava-Gomez, 2019. "Discriminant analysis for discrete variables derived from a tree-structured graphical model," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 855-876, December.
    19. Shusaku Tsumoto & Tomohirno Kimura & Shoji Hirano, 2021. "Determination of Disease from Discharge Summaries," The Review of Socionetwork Strategies, Springer, vol. 15(1), pages 49-66, June.
    20. Khan, Jafar A. & Van Aelst, Stefan & Zamar, Ruben H., 2010. "Fast robust estimation of prediction error based on resampling," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3121-3130, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:79:y:2015:i:3:p:2073-2099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.