IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v13y2019i4d10.1007_s11634-019-00352-z.html
   My bibliography  Save this article

Discriminant analysis for discrete variables derived from a tree-structured graphical model

Author

Listed:
  • Gonzalo Perez-de-la-Cruz

    (National Institute of Statistics and Geography (INEGI) of Mexico)

  • Guillermina Eslava-Gomez

    (UNAM)

Abstract

The purpose of this paper is to illustrate the potential use of discriminant analysis for discrete variables whose dependence structure is assumed to follow, or can be approximated by, a tree-structured graphical model. This is done by comparing its empirical performance, using estimated error rates for real and simulated data, with the well-known Naive Bayes classification rule and with linear logistic regression, both of which do not consider any interaction between variables, and with models that consider interactions like a decomposable and the saturated model. The results show that discriminant analysis based on tree-structured graphical models, a simple nonlinear method including only some of the pairwise interactions between variables, is competitive with, and sometimes superior to, other methods which assume no interactions, and has the advantage over more complex decomposable models of finding the graph structure in a fast way and exact form.

Suggested Citation

  • Gonzalo Perez-de-la-Cruz & Guillermina Eslava-Gomez, 2019. "Discriminant analysis for discrete variables derived from a tree-structured graphical model," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 855-876, December.
  • Handle: RePEc:spr:advdac:v:13:y:2019:i:4:d:10.1007_s11634-019-00352-z
    DOI: 10.1007/s11634-019-00352-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-019-00352-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-019-00352-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abreu, Gabriel C. G. & Labouriau, Rodrigo & Edwards, David, 2010. "High-Dimensional Graphical Model Search with the gRapHD R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 37(i01).
    2. Asparoukhov, Ognian K. & Krzanowski, Wojtek J., 2001. "A comparison of discriminant procedures for binary variables," Computational Statistics & Data Analysis, Elsevier, vol. 38(2), pages 139-160, December.
    3. Kim, Ji-Hyun, 2009. "Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3735-3745, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yau Fu, Chong & Hung, Jeng-Hsiu & Liu, Shih-Hua & Chien, Yung-Lin, 2005. "A new algorithm for solving binary discrimination in conditional logistic regression, with two choices of strata," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 85-97, April.
    2. Airola, Antti & Pahikkala, Tapio & Waegeman, Willem & De Baets, Bernard & Salakoski, Tapio, 2011. "An experimental comparison of cross-validation techniques for estimating the area under the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1828-1844, April.
    3. Chu, Chi-Yang & Henderson, Daniel J. & Parmeter, Christopher F., 2017. "On discrete Epanechnikov kernel functions," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 79-105.
    4. John J Nay & Yevgeniy Vorobeychik, 2016. "Predicting Human Cooperation," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    5. Kazim Topuz & Behrooz Davazdahemami & Dursun Delen, 2024. "A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases," Annals of Operations Research, Springer, vol. 341(1), pages 673-697, October.
    6. Matthew Tuson & Berwin Turlach & Kevin Murray & Mei Ruu Kok & Alistair Vickery & David Whyatt, 2021. "Predicting Future Geographic Hotspots of Potentially Preventable Hospitalisations Using All Subset Model Selection and Repeated K-Fold Cross-Validation," IJERPH, MDPI, vol. 18(19), pages 1-21, September.
    7. I. Charvet & A. Suppasri & H. Kimura & D. Sugawara & F. Imamura, 2015. "A multivariate generalized linear tsunami fragility model for Kesennuma City based on maximum flow depths, velocities and debris impact, with evaluation of predictive accuracy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 2073-2099, December.
    8. Khan, Jafar A. & Van Aelst, Stefan & Zamar, Ruben H., 2010. "Fast robust estimation of prediction error based on resampling," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3121-3130, December.
    9. Mark Lown & Michael Brown & Chloë Brown & Arthur M Yue & Benoy N Shah & Simon J Corbett & George Lewith & Beth Stuart & Michael Moore & Paul Little, 2020. "Machine learning detection of Atrial Fibrillation using wearable technology," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-9, January.
    10. Piccarreta, Raffaella, 2010. "Binary trees for dissimilarity data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1516-1524, June.
    11. Ha, Tran Vinh & Asada, Takumi & Arimura, Mikiharu, 2019. "Determination of the influence factors on household vehicle ownership patterns in Phnom Penh using statistical and machine learning methods," Journal of Transport Geography, Elsevier, vol. 78(C), pages 70-86.
    12. Zhengnan Huang & Hongjiu Zhang & Jonathan Boss & Stephen A Goutman & Bhramar Mukherjee & Ivo D Dinov & Yuanfang Guan & for the Pooled Resource Open-Access ALS Clinical Trials Consortium, 2017. "Complete hazard ranking to analyze right-censored data: An ALS survival study," PLOS Computational Biology, Public Library of Science, vol. 13(12), pages 1-21, December.
    13. Xue, Jing-Hao & Titterington, D. Michael, 2010. "On the generative-discriminative tradeoff approach: Interpretation, asymptotic efficiency and classification performance," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 438-451, February.
    14. Gianluca Gazzola & Myong K. Jeong, 2021. "Support vector regression for polyhedral and missing data," Annals of Operations Research, Springer, vol. 303(1), pages 483-506, August.
    15. Ayed Alwadain & Rao Faizan Ali & Amgad Muneer, 2023. "Estimating Financial Fraud through Transaction-Level Features and Machine Learning," Mathematics, MDPI, vol. 11(5), pages 1-15, February.
    16. John J. Nay & Yevgeniy Vorobeychik, 2016. "Predicting Human Cooperation," Papers 1601.07792, arXiv.org, revised Apr 2016.
    17. Gafar Matanmi Oyeyemi & George Chinanu Mbaeyi & Saheed Ishola Salawu & Bernard Olagboyega Muse, 2016. "On discrimination procedure with mixtures of continuous and categorical variables," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(10), pages 1864-1873, August.
    18. Shusaku Tsumoto & Tomohiro Kimura & Shoji Hirano, 2022. "Expectation–Maximization (EM) Clustering as a Preprocessing Method for Clinical Pathway Mining," The Review of Socionetwork Strategies, Springer, vol. 16(1), pages 25-52, April.
    19. Zachary K. Collier & Haobai Zhang & Bridgette Johnson, 2021. "Finite Mixture Modeling for Program Evaluation: Resampling and Pre-processing Approaches," Evaluation Review, , vol. 45(6), pages 309-333, December.
    20. Zhijian Wang & Likang Zheng & Junyuan Wang & Wenhua Du, 2019. "Research on Novel Bearing Fault Diagnosis Method Based on Improved Krill Herd Algorithm and Kernel Extreme Learning Machine," Complexity, Hindawi, vol. 2019, pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:13:y:2019:i:4:d:10.1007_s11634-019-00352-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.