IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i11p3735-3745.html
   My bibliography  Save this article

Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap

Author

Listed:
  • Kim, Ji-Hyun

Abstract

We consider the accuracy estimation of a classifier constructed on a given training sample. The naive resubstitution estimate is known to have a downward bias problem. The traditional approach to tackling this bias problem is cross-validation. The bootstrap is another way to bring down the high variability of cross-validation. But a direct comparison of the two estimators, cross-validation and bootstrap, is not fair because the latter estimator requires much heavier computation. We performed an empirical study to compare the .632+ bootstrap estimator with the repeated 10-fold cross-validation and the repeated one-third holdout estimator. All the estimators were set to require about the same amount of computation. In the simulation study, the repeated 10-fold cross-validation estimator was found to have better performance than the .632+ bootstrap estimator when the classifier is highly adaptive to the training sample. We have also found that the .632+ bootstrap estimator suffers from a bias problem for large samples as well as for small samples.

Suggested Citation

  • Kim, Ji-Hyun, 2009. "Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3735-3745, September.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:11:p:3735-3745
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00160-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosa A. Schiavo & David J. Hand, 2000. "Ten More Years of Error Rate Research," International Statistical Review, International Statistical Institute, vol. 68(3), pages 295-310, December.
    2. G. Fitzmaurice & W. Krzanowski & D. Hand, 1991. "A Monte Carlo study of the 632 bootstrap estimator of error rate," Journal of Classification, Springer;The Classification Society, vol. 8(2), pages 239-250, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Airola, Antti & Pahikkala, Tapio & Waegeman, Willem & De Baets, Bernard & Salakoski, Tapio, 2011. "An experimental comparison of cross-validation techniques for estimating the area under the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1828-1844, April.
    2. W. J. Krzanowski, 2001. "Data-based interval estimation of classification error rates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(5), pages 585-595.
    3. Dean Fantazzini & Yufeng Xiao, 2023. "Detecting Pump-and-Dumps with Crypto-Assets: Dealing with Imbalanced Datasets and Insiders’ Anticipated Purchases," Econometrics, MDPI, vol. 11(3), pages 1-73, August.
    4. Artem Sokolov & Daniel E Carlin & Evan O Paull & Robert Baertsch & Joshua M Stuart, 2016. "Pathway-Based Genomics Prediction using Generalized Elastic Net," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-23, March.
    5. Conde David & Salvador Bonifacio & Rueda Cristina & Fernández Miguel A., 2013. "Performance and estimation of the true error rate of classification rules built with additional information. An application to a cancer trial," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(5), pages 583-602, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:11:p:3735-3745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.