IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6943234.html
   My bibliography  Save this article

A Novel Method for Intelligent Fault Diagnosis of Bearing Based on Capsule Neural Network

Author

Listed:
  • Zhijian Wang
  • Likang Zheng
  • Wenhua Du
  • Wenan Cai
  • Jie Zhou
  • Jingtai Wang
  • Xiaofeng Han
  • Gaofeng He

Abstract

In the era of big data, data-driven methods mainly based on deep learning have been widely used in the field of intelligent fault diagnosis. Traditional neural networks tend to be more subjective when classifying fault time-frequency graphs, such as pooling layer, and ignore the location relationship of features. The newly proposed neural network named capsules network takes into account the size and location of the image. Inspired by this, capsules network combined with the Xception module (XCN) is applied in intelligent fault diagnosis, so as to improve the classification accuracy of intelligent fault diagnosis. Firstly, the fault time-frequency graphs are obtained by wavelet time-frequency analysis. Then the time-frequency graphs data which are adjusted the pixel size are input into XCN for training. In order to accelerate the learning rate, the parameters which have bigger change are punished by cost function in the process of training. After the operation of dynamic routing, the length of the capsule is used to classify the types of faults and get the classification of loss. Then the longest capsule is used to reconstruct fault time-frequency graphs which are used to measure the reconstruction of loss. In order to determine the convergence condition, the three losses are combined through the weight coefficient. Finally, the proposed model and the traditional methods are, respectively, trained and tested under laboratory conditions and actual wind turbine gearbox conditions to verify the classification ability and reliable ability.

Suggested Citation

  • Zhijian Wang & Likang Zheng & Wenhua Du & Wenan Cai & Jie Zhou & Jingtai Wang & Xiaofeng Han & Gaofeng He, 2019. "A Novel Method for Intelligent Fault Diagnosis of Bearing Based on Capsule Neural Network," Complexity, Hindawi, vol. 2019, pages 1-17, June.
  • Handle: RePEc:hin:complx:6943234
    DOI: 10.1155/2019/6943234
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/6943234.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/6943234.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/6943234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhijian Wang & Junyuan Wang & Wenan Cai & Jie Zhou & Wenhua Du & Jingtai Wang & Gaofeng He & Huihui He, 2019. "Application of an Improved Ensemble Local Mean Decomposition Method for Gearbox Composite Fault Diagnosis," Complexity, Hindawi, vol. 2019, pages 1-17, May.
    2. Liu, Xianzeng & Yang, Yuhu & Zhang, Jun, 2018. "Resultant vibration signal model based fault diagnosis of a single stage planetary gear train with an incipient tooth crack on the sun gear," Renewable Energy, Elsevier, vol. 122(C), pages 65-79.
    3. Tata Subba Rao & Granville Tunnicliffe Wilson & Alessandro Cardinali & Guy P. Nason, 2017. "Locally Stationary Wavelet Packet Processes: Basis Selection and Model Fitting," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 151-174, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhijian Wang & Likang Zheng & Junyuan Wang & Wenhua Du, 2019. "Research on Novel Bearing Fault Diagnosis Method Based on Improved Krill Herd Algorithm and Kernel Extreme Learning Machine," Complexity, Hindawi, vol. 2019, pages 1-19, November.
    2. Song, Wanqing & Cattani, Carlo & Chi, Chi-Hung, 2020. "Multifractional Brownian motion and quantum-behaved particle swarm optimization for short term power load forecasting: An integrated approach," Energy, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Guolin & Ding, Kang & Wu, Xiaomeng & Yang, Xiaoqing, 2019. "Dynamics modeling and vibration modulation signal analysis of wind turbine planetary gearbox with a floating sun gear," Renewable Energy, Elsevier, vol. 139(C), pages 718-729.
    2. Wang, Cheng, 2024. "Study on dynamic performance and optimal design for differential gear train in wind turbine gearbox," Renewable Energy, Elsevier, vol. 221(C).
    3. Kong, Yun & Han, Qinkai & Chu, Fulei & Qin, Yechen & Dong, Mingming, 2023. "Spectral ensemble sparse representation classification approach for super-robust health diagnostics of wind turbine planetary gearbox," Renewable Energy, Elsevier, vol. 219(P1).
    4. Hui Li & Fan Li & Rong Jia & Fang Zhai & Liang Bai & Xingqi Luo, 2021. "Research on the Fault Feature Extraction of Rolling Bearings Based on SGMD-CS and the AdaBoost Framework," Energies, MDPI, vol. 14(6), pages 1-19, March.
    5. Euan T. McGonigle & Rebecca Killick & Matthew A. Nunes, 2022. "Trend locally stationary wavelet processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 895-917, November.
    6. Rishi Kumar & Sankar Kumar Roy, 2022. "Model based diagnostic tool for detection of gear tooth crack in a wind turbine gearbox under constant load," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1666-1687, August.
    7. Zhijian Wang & Likang Zheng & Junyuan Wang & Wenhua Du, 2019. "Research on Novel Bearing Fault Diagnosis Method Based on Improved Krill Herd Algorithm and Kernel Extreme Learning Machine," Complexity, Hindawi, vol. 2019, pages 1-19, November.
    8. Jialin Li & Xueyi Li & David He & Yongzhi Qu, 2020. "A domain adaptation model for early gear pitting fault diagnosis based on deep transfer learning network," Journal of Risk and Reliability, , vol. 234(1), pages 168-182, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6943234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.