IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i12p1218-d83692.html
   My bibliography  Save this article

Inventory and Policy Reduction Potential of Greenhouse Gas and Pollutant Emissions of Road Transportation Industry in China

Author

Listed:
  • Ye Li

    (Key Laboratory of Road and Traffic Engineering of the State Ministry of Education, Tongji University, Shanghai 201804, China)

  • Lei Bao

    (Key Laboratory of Road and Traffic Engineering of the State Ministry of Education, Tongji University, Shanghai 201804, China
    Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA)

  • Wenxiang Li

    (Key Laboratory of Road and Traffic Engineering of the State Ministry of Education, Tongji University, Shanghai 201804, China)

  • Haopeng Deng

    (Key Laboratory of Road and Traffic Engineering of the State Ministry of Education, Tongji University, Shanghai 201804, China)

Abstract

In recent years, emissions from the road transportation industry in China have been increasing rapidly. To evaluate the reduction potential of greenhouse gas and pollutant emissions of the industry in China, its emission inventory was calculated and scenario analysis was created for the period between 2012 and 2030 in this paper. Based on the Long-range Energy Alternatives Planning System (LEAP) model, the development of China’s road transportation industry in two scenarios (the business-as-usual (BAU) scenario and the comprehensive-mitigation (CM) scenario) was simulated. In the Comprehensive Mitigation scenario, there are nine various measures which include Fuel Economy Standards, Auto Emission Standards, Energy-saving Technology, Tax Policy, Eco-driving, Logistics Informatization, Vehicle Liquidation, Electric Vehicles, and Alternative Fuels. The cumulative energy and emission reductions of these specific measures were evaluated. Our results demonstrate that China’s road transportation produced 881 million metric tons of CO 2 and emitted 1420 thousand tons of CO, 2150 thousand tons of NO x , 148 thousand tons of PM 10 , and 745 thousand tons of HC in 2012. The reduction potential is quite large, and road freight transportation is the key mitigation subsector, accounting for 85%–92% of the total emission. For energy conservation and carbon emission mitigation, logistics informatization is the most effective method, potentially reducing 1.80 billion tons of coal equivalent and 3.83 billion tons of CO 2 from 2012 to 2030. In terms of air pollutant emission mitigation, the auto emission standards measure performs best with respect to NO x , PM 10 , and HC emission mitigation, and logistic informatization measure is the best in CO emission reduction. In order to maximize the mitigation potential of China’s road transportation industry, the government needs to implement various measures in a timely and strict fashion.

Suggested Citation

  • Ye Li & Lei Bao & Wenxiang Li & Haopeng Deng, 2016. "Inventory and Policy Reduction Potential of Greenhouse Gas and Pollutant Emissions of Road Transportation Industry in China," Sustainability, MDPI, vol. 8(12), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1218-:d:83692
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/12/1218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/12/1218/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nakamura, Kazuki & Hayashi, Yoshitsugu, 2013. "Strategies and instruments for low-carbon urban transport: An international review on trends and effects," Transport Policy, Elsevier, vol. 29(C), pages 264-274.
    2. Sadri, A. & Ardehali, M.M. & Amirnekooei, K., 2014. "General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN," Energy, Elsevier, vol. 77(C), pages 831-843.
    3. Hong, Sungjun & Chung, Yanghon & Kim, Jongwook & Chun, Dongphil, 2016. "Analysis on the level of contribution to the national greenhouse gas reduction target in Korean transportation sector using LEAP model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 549-559.
    4. Zhu Liu, 2015. "China?s Carbon Emissions Report 2015," Working Paper 269176, Harvard University OpenScholar.
    5. Jean-Marc Burniaux & Jean Château, 2011. "Mitigation Potential of Removing Fossil Fuel Subsidies: A General Equilibrium Assessment," OECD Economics Department Working Papers 853, OECD Publishing.
    6. McPherson, Madeleine & Karney, Bryan, 2014. "Long-term scenario alternatives and their implications: LEAP model application of Panama׳s electricity sector," Energy Policy, Elsevier, vol. 68(C), pages 146-157.
    7. Chavez-Baeza, Carlos & Sheinbaum-Pardo, Claudia, 2014. "Sustainable passenger road transport scenarios to reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City Metropolitan Area," Energy, Elsevier, vol. 66(C), pages 624-634.
    8. Sivak, Michael & Schoettle, Brandon, 2012. "Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy," Transport Policy, Elsevier, vol. 22(C), pages 96-99.
    9. Graham-Rowe, Ella & Skippon, Stephen & Gardner, Benjamin & Abraham, Charles, 2011. "Can we reduce car use and, if so, how? A review of available evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(5), pages 401-418, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meiling He & Jiaren Shen & Xiaohui Wu & Jianqiang Luo, 2018. "Logistics Space: A Literature Review from the Sustainability Perspective," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    2. Yanjie Zhou & Gyu M. Lee, 2017. "A Lagrangian Relaxation-Based Solution Method for a Green Vehicle Routing Problem to Minimize Greenhouse Gas Emissions," Sustainability, MDPI, vol. 9(5), pages 1-17, May.
    3. Fei Ma & Wenlin Wang & Qipeng Sun & Fei Liu & Xiaodan Li, 2018. "Ecological Pressure of Carbon Footprint in Passenger Transport: Spatio-Temporal Changes and Regional Disparities," Sustainability, MDPI, vol. 10(2), pages 1-17, January.
    4. Shou-feng Ji & Rong-juan Luo, 2017. "A Hybrid Estimation of Distribution Algorithm for Multi-Objective Multi-Sourcing Intermodal Transportation Network Design Problem Considering Carbon Emissions," Sustainability, MDPI, vol. 9(7), pages 1-24, June.
    5. Hongliang Li & Jiangwei Chu & Jialu Li & Haosong Wang & Shengjun Wang, 2017. "Exhaust Pollutants Characteristic of In-Use Vehicles under Acceleration Simulation Mode and Emission Standard Revision for Hei Longjiang Province, China," Sustainability, MDPI, vol. 9(8), pages 1-14, August.
    6. Elifcan Göçmen & Rızvan Erol, 2018. "The Problem of Sustainable Intermodal Transportation: A Case Study of an International Logistics Company, Turkey," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    7. Ling Zhang & Jingjing Hao & Xiaofeng Ji & Lan Liu, 2019. "Research on the Complex Characteristics of Freight Transportation from a Multiscale Perspective Using Freight Vehicle Trip Data," Sustainability, MDPI, vol. 11(7), pages 1-20, March.
    8. Sehee Han & Seunguk Na & Nam-Gi Lim, 2020. "Evaluation of Road Transport Pollutant Emissions from Transporting Building Materials to the Construction Site by Replacing Old Vehicles," IJERPH, MDPI, vol. 17(24), pages 1-15, December.
    9. Jieshuang Dong & Yiming Li & Wenxiang Li & Songze Liu, 2022. "CO 2 Emission Reduction Potential of Road Transport to Achieve Carbon Neutrality in China," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    10. Hongyou Lu & Yunchan Zhu & Yu Qi & Jinliang Yu, 2018. "Do Urban Subway Openings Reduce PM 2.5 Concentrations? Evidence from China," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    11. Hua Huang & Daizhong Su & Wenjie Peng & You Wu, 2020. "Development of a Mobile Application System for Eco-Accounting," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    12. Boshuai Zhao & Juliang Zhang & Wenchao Wei, 2019. "Impact of Time Restriction and Logistics Sprawl on Urban Freight and Environment: The Case of Beijing Agricultural Freight," Sustainability, MDPI, vol. 11(13), pages 1-17, July.
    13. Xianen Wang & Baoyang Qin & Hanning Wang & Xize Dong & Haiyan Duan, 2022. "Carbon Mitigation Pathways of Urban Transportation under Cold Climatic Conditions," IJERPH, MDPI, vol. 19(8), pages 1-16, April.
    14. Juan Francisco Coloma & Marta García & Yang Wang & Andrés Monzón, 2017. "Green Eco-Driving Effects in Non-Congested Cities," Sustainability, MDPI, vol. 10(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahid, Muhammad & Ullah, Kafait & Imran, Kashif & Masroor, Neha & Sajid, Muhammad Bilal, 2022. "Economic and environmental analysis of green transport penetration in Pakistan," Energy Policy, Elsevier, vol. 166(C).
    2. Vicente Sebastian Espinoza & Veronica Guayanlema & Javier Mart nez-G mez, 2018. "Energy Efficiency Plan Benefits in Ecuador: Long-range Energy Alternative Planning Model," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 52-54.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Luis Rivera-González & David Bolonio & Luis F. Mazadiego & Robert Valencia-Chapi, 2019. "Long-Term Electricity Supply and Demand Forecast (2018–2040): A LEAP Model Application towards a Sustainable Power Generation System in Ecuador," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    5. Monica Maduekwe & Uduak Akpan & Salisu Isihak, 2020. "Road Transport Energy Consumption and Vehicular Emissions in Lagos, Nigeria," Research Africa Network Working Papers 20/055, Research Africa Network (RAN).
    6. Zhang, Dongyu & Liu, Gengyuan & Chen, Caocao & Zhang, Yan & Hao, Yan & Casazza, Marco, 2019. "Medium-to-long-term coupled strategies for energy efficiency and greenhouse gas emissions reduction in Beijing (China)," Energy Policy, Elsevier, vol. 127(C), pages 350-360.
    7. Dioha, Michael O. & Kumar, Atul, 2020. "Sustainable energy pathways for land transport in Nigeria," Utilities Policy, Elsevier, vol. 64(C).
    8. Saket, Mohammad Javad & Maleki, Abbas & Hezaveh, Erfan Doroudgar & Karimi, Mohammad Sadegh, 2019. "Institutional analysis on impediments over fuel consumption reduction at Iran's transportation niches," Energy Policy, Elsevier, vol. 129(C), pages 861-867.
    9. Pedro Gerber Machado & Ana Carolina Rodrigues Teixeira & Flavia Mendes de Almeida Collaço & Adam Hawkes & Dominique Mouette, 2020. "Assessment of Greenhouse Gases and Pollutant Emissions in the Road Freight Transport Sector: A Case Study for São Paulo State, Brazil," Energies, MDPI, vol. 13(20), pages 1-26, October.
    10. Liu, Lei & Wang, Ke & Wang, Shanshan & Zhang, Ruiqin & Tang, Xiaoyan, 2018. "Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 382-396.
    11. Luis Rivera-González & David Bolonio & Luis F. Mazadiego & Sebastián Naranjo-Silva & Kenny Escobar-Segovia, 2020. "Long-Term Forecast of Energy and Fuels Demand Towards a Sustainable Road Transport Sector in Ecuador (2016–2035): A LEAP Model Application," Sustainability, MDPI, vol. 12(2), pages 1-26, January.
    12. Ismael Mohammed Saeed & Ahmad Tarkhany & Younis Hama & Shwan Al-Shatri, 2023. "Environmental considerations, sustainability opportunities and Iraqi government’s energy policies: a comparative study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6879-6895, July.
    13. Kumar, Subhash & Madlener, Reinhard, 2016. "CO2 emission reduction potential assessment using renewable energy in India," Energy, Elsevier, vol. 97(C), pages 273-282.
    14. Hongliang Li & Jiangwei Chu & Jialu Li & Haosong Wang & Shengjun Wang, 2017. "Exhaust Pollutants Characteristic of In-Use Vehicles under Acceleration Simulation Mode and Emission Standard Revision for Hei Longjiang Province, China," Sustainability, MDPI, vol. 9(8), pages 1-14, August.
    15. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
    16. Junjie Wang & Yuan Li & Yi Zhang, 2022. "Research on Carbon Emissions of Road Traffic in Chengdu City Based on a LEAP Model," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    17. Jun Guan Neoh & Maxwell Chipulu & Alasdair Marshall, 2017. "What encourages people to carpool? An evaluation of factors with meta-analysis," Transportation, Springer, vol. 44(2), pages 423-447, March.
    18. Teixeira, João Filipe & Silva, Cecília & Moura e Sá, Frederico, 2023. "Factors influencing modal shift to bike sharing: Evidence from a travel survey conducted during COVID-19," Journal of Transport Geography, Elsevier, vol. 111(C).
    19. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    20. Jaller, Miguel & Pahwa, Anmol & Zhang, Michael, 2021. "Cargo Routing and Disadvantaged Communities," Institute of Transportation Studies, Working Paper Series qt9qg2318x, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1218-:d:83692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.