IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2017i1p28-d124022.html
   My bibliography  Save this article

Green Eco-Driving Effects in Non-Congested Cities

Author

Listed:
  • Juan Francisco Coloma

    (Betancourt Research Group, Universidad de Extremadura, 06071 Badajoz, Spain)

  • Marta García

    (Betancourt Research Group, Universidad de Extremadura, 06071 Badajoz, Spain)

  • Yang Wang

    (Transport Research Centre, TRANSyT, Universidad Politecnica de Madrid, 28040 Madrid, Spain)

  • Andrés Monzón

    (Transport Research Centre, TRANSyT, Universidad Politecnica de Madrid, 28040 Madrid, Spain)

Abstract

Despite technological advances in engines and fuels, the transportation sector is still one of the largest emitters of greenhouse gas (GHG). Driving patterns, including eco-driving techniques, are a complementary measure for saving GHG emissions. Most eco-driving studies so far have been conducted in large cities suffering chronic congestion problems. The aim of this research is therefore to analyse the potential of driver behaviour for reducing emissions in a small non-congested city. Driver performance parameters such as travel speeds, number of stops, revolutions per minute, and maximum acceleration-deceleration are also studied. The methodology is designed to measure the effect of both eco-driving and eco-routing under real traffic conditions. A campaign was carried out in the city of Caceres (Spain) to collect data on various types of roads under different traffic conditions. This research concludes that eco-driving leads to CO 2 savings on all routes and road types of 17% in gasoline engines and 21% in diesel, although travel times are increased by 7.5% on average. The shortest route is also the most ecological, regardless of the traffic volume and characteristics, implying that consumption in non-congested cities depends mainly on distance travelled rather than driving patterns in terms of number of stops, speed and acceleration.

Suggested Citation

  • Juan Francisco Coloma & Marta García & Yang Wang & Andrés Monzón, 2017. "Green Eco-Driving Effects in Non-Congested Cities," Sustainability, MDPI, vol. 10(1), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2017:i:1:p:28-:d:124022
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/1/28/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/1/28/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fiamma Perez-Prada & Andres Monzon & Cristina Valdes, 2017. "Managing Traffic Flows for Cleaner Cities: The Role of Green Navigation Systems," Energies, MDPI, vol. 10(6), pages 1-18, June.
    2. Barkenbus, Jack N., 2010. "Eco-driving: An overlooked climate change initiative," Energy Policy, Elsevier, vol. 38(2), pages 762-769, February.
    3. Ye Li & Lei Bao & Wenxiang Li & Haopeng Deng, 2016. "Inventory and Policy Reduction Potential of Greenhouse Gas and Pollutant Emissions of Road Transportation Industry in China," Sustainability, MDPI, vol. 8(12), pages 1-19, November.
    4. Gennaro Nicola Bifulco & Francesco Galante & Luigi Pariota & Maria Russo Spena, 2015. "A Linear Model for the Estimation of Fuel Consumption and the Impact Evaluation of Advanced Driving Assistance Systems," Sustainability, MDPI, vol. 7(10), pages 1-18, October.
    5. Francesco Bottiglione & Tommaso Contursi & Angelo Gentile & Giacomo Mantriota, 2014. "The Fuel Economy of Hybrid Buses: The Role of Ancillaries in Real Urban Driving," Energies, MDPI, vol. 7(7), pages 1-19, July.
    6. Hua Ma & Guizhen He, 2016. "Effects of the Post-Olympics Driving Restrictions on Air Quality in Beijing," Sustainability, MDPI, vol. 8(9), pages 1-15, September.
    7. Hickman, Robin & Ashiru, Olu & Banister, David, 2010. "Transport and climate change: Simulating the options for carbon reduction in London," Transport Policy, Elsevier, vol. 17(2), pages 110-125, March.
    8. Sivak, Michael & Schoettle, Brandon, 2012. "Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy," Transport Policy, Elsevier, vol. 22(C), pages 96-99.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strömberg, Helena & Karlsson, I.C. MariAnne & Rexfelt, Oskar, 2015. "Eco-driving: Drivers’ understanding of the concept and implications for future interventions," Transport Policy, Elsevier, vol. 39(C), pages 48-54.
    2. Vaezipour, Atiyeh & Rakotonirainy, Andry & Haworth, Narelle & Delhomme, Patricia, 2018. "A simulator evaluation of in-vehicle human machine interfaces for eco-safe driving," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 696-713.
    3. Alam, Md. Saniul & McNabola, Aonghus, 2014. "A critical review and assessment of Eco-Driving policy & technology: Benefits & limitations," Transport Policy, Elsevier, vol. 35(C), pages 42-49.
    4. Huang, Yuhan & Ng, Elvin C.Y. & Zhou, John L. & Surawski, Nic C. & Chan, Edward F.C. & Hong, Guang, 2018. "Eco-driving technology for sustainable road transport: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 596-609.
    5. Schall, Dominik L. & Mohnen, Alwine, 2017. "Incentivizing energy-efficient behavior at work: An empirical investigation using a natural field experiment on eco-driving," Applied Energy, Elsevier, vol. 185(P2), pages 1757-1768.
    6. Yiwen Zhou & Fengxiang Guo & Simin Wu & Wenyao He & Xuefei Xiong & Zheng Chen & Dingan Ni, 2022. "Safety and Economic Evaluations of Electric Public Buses Based on Driving Behavior," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    7. Lin, Rui & Wang, Peggy, 2022. "Intention to perform eco-driving and acceptance of eco-driving system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 444-459.
    8. Liu, Feiqi & Zhao, Fuquan & Liu, Zongwei & Hao, Han, 2019. "Can autonomous vehicle reduce greenhouse gas emissions? A country-level evaluation," Energy Policy, Elsevier, vol. 132(C), pages 462-473.
    9. Sanguinetti, Angela & Queen, Ella & Yee, Christopher & Akanesuvan, Kantapon, 2020. "Average impact and important features of onboard eco-driving feedback: A meta-analysis," Institute of Transportation Studies, Working Paper Series qt9hm406d5, Institute of Transportation Studies, UC Davis.
    10. Ahmed, Sumayyah & Sanguinetti, Angela, 2015. "OBDEnergy: Making Metrics Meaningful in Eco-driving Feedback," Institute of Transportation Studies, Working Paper Series qt0x73t2jw, Institute of Transportation Studies, UC Davis.
    11. Pietro Stabile & Federico Ballo & Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2023. "Eco-Driving Strategy Implementation for Ultra-Efficient Lightweight Electric Vehicles in Realistic Driving Scenarios," Energies, MDPI, vol. 16(3), pages 1-19, January.
    12. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    13. Jaller, Miguel & Pahwa, Anmol & Zhang, Michael, 2021. "Cargo Routing and Disadvantaged Communities," Institute of Transportation Studies, Working Paper Series qt9qg2318x, Institute of Transportation Studies, UC Davis.
    14. Yuan, Weichang & Frey, H. Christopher, 2020. "Potential for metro rail energy savings and emissions reduction via eco-driving," Applied Energy, Elsevier, vol. 268(C).
    15. Soto, Jose J. & Macea, Luis F. & Cantillo, Victor, 2023. "Analysing a license plate-based vehicle restriction policy with optional exemption charge: The case in Cali, Colombia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    16. Bi, Huibo & Shang, Wen-Long & Chen, Yanyan & Wang, Kezhi & Yu, Qing & Sui, Yi, 2021. "GIS aided sustainable urban road management with a unifying queueing and neural network model," Applied Energy, Elsevier, vol. 291(C).
    17. Jieshuang Dong & Yiming Li & Wenxiang Li & Songze Liu, 2022. "CO 2 Emission Reduction Potential of Road Transport to Achieve Carbon Neutrality in China," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    18. Yang Wang & Alessandra Boggio-Marzet, 2018. "Evaluation of Eco-Driving Training for Fuel Efficiency and Emissions Reduction According to Road Type," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    19. Geir H. M. Bjertnæs, 2019. "Efficient taxation of fuel and road use," Discussion Papers 905, Statistics Norway, Research Department.
    20. Wojciech Adamski & Krzysztof Brzozowski & Jacek Nowakowski & Tomasz Praszkiewicz & Tomasz Knefel, 2021. "Excess Fuel Consumption Due to Selection of a Lower Than Optimal Gear—Case Study Based on Data Obtained in Real Traffic Conditions," Energies, MDPI, vol. 14(23), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2017:i:1:p:28-:d:124022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.