IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2018-04-6.html
   My bibliography  Save this article

Energy Efficiency Plan Benefits in Ecuador: Long-range Energy Alternative Planning Model

Author

Listed:
  • Vicente Sebastian Espinoza

    (Instituto Nacional de Eficiencia Energ tica y Energ as Renovables, Quito, Ecuador,)

  • Veronica Guayanlema

    (Instituto Nacional de Eficiencia Energ tica y Energ as Renovables, Quito, Ecuador)

  • Javier Mart nez-G mez

    (Instituto Nacional de Eficiencia Energ tica y Energ as Renovables, Quito, Ecuador,)

Abstract

The aim of this study was to analyze the energy demand in a scenario considering the National Policy for Energy Efficiency (PLANEE) of Ecuador. For this purpose, the effects on energy supply and demand by taking into account an economic scenario were studied. The economic scenario considered historical Gross Domestic Product (GDP). The main contribution is this scenario was considered the Development Plan and current information. The data selected included the fall in GDP in 2015 as a result of the crisis caused by the fall in oil prices. The energy scenarios were designed using Long-range Energy Alternative Planning (LEAP) model. Two scenarios were development, business as usual (BaU) without policies and projects. The results show that energy efficiency measures implicate cumulative energy savings that could reach 216,700 kBOE between 2015 and 2035.

Suggested Citation

  • Vicente Sebastian Espinoza & Veronica Guayanlema & Javier Mart nez-G mez, 2018. "Energy Efficiency Plan Benefits in Ecuador: Long-range Energy Alternative Planning Model," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 52-54.
  • Handle: RePEc:eco:journ2:2018-04-6
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/6503/3784
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/6503/3784
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Wenjia & Wang, Can & Chen, Jining & Wang, Ke & Zhang, Ying & Lu, Xuedu, 2008. "Comparison of CO2 emission scenarios and mitigation opportunities in China's five sectors in 2020," Energy Policy, Elsevier, vol. 36(3), pages 1181-1194, March.
    2. Hong, Sungjun & Chung, Yanghon & Kim, Jongwook & Chun, Dongphil, 2016. "Analysis on the level of contribution to the national greenhouse gas reduction target in Korean transportation sector using LEAP model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 549-559.
    3. Shin, Ho-Chul & Park, Jin-Won & Kim, Ho-Seok & Shin, Eui-Soon, 2005. "Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model," Energy Policy, Elsevier, vol. 33(10), pages 1261-1270, July.
    4. Emodi, Nnaemeka Vincent & Emodi, Chinenye Comfort & Murthy, Girish Panchakshara & Emodi, Adaeze Saratu Augusta, 2017. "Energy policy for low carbon development in Nigeria: A LEAP model application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 247-261.
    5. Barkenbus, Jack N., 2010. "Eco-driving: An overlooked climate change initiative," Energy Policy, Elsevier, vol. 38(2), pages 762-769, February.
    6. Wang, Yanjia & Gu, Alun & Zhang, Aling, 2011. "Recent development of energy supply and demand in China, and energy sector prospects through 2030," Energy Policy, Elsevier, vol. 39(11), pages 6745-6759.
    7. McPherson, Madeleine & Karney, Bryan, 2014. "Long-term scenario alternatives and their implications: LEAP model application of Panama׳s electricity sector," Energy Policy, Elsevier, vol. 68(C), pages 146-157.
    8. Joyce Dargay & Dermot Gately & Martin Sommer, 2007. "Vehicle Ownership and Income Growth, Worldwide: 1960-2030," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 143-170.
    9. Martínez-Gómez, J. & Ibarra, D. & Villacis, S. & Cuji, P. & Cruz, P.R., 2016. "Analysis of LPG, electric and induction cookers during cooking typical Ecuadorian dishes into the national efficient cooking program," Food Policy, Elsevier, vol. 59(C), pages 88-102.
    10. Wang, Hongsheng & Wang, Yunxia & Wang, Haikun & Liu, Miaomiao & Zhang, Yanxia & Zhang, Rongrong & Yang, Jie & Bi, Jun, 2014. "Mitigating greenhouse gas emissions from China's cities: Case study of Suzhou," Energy Policy, Elsevier, vol. 68(C), pages 482-489.
    11. Sadri, A. & Ardehali, M.M. & Amirnekooei, K., 2014. "General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN," Energy, Elsevier, vol. 77(C), pages 831-843.
    12. Javier Mart nez-G mez & Javier Mart nez-G mez & Gonzalo Guerr n & Gonzalo Guerr n & A. J. Riofrio, 2017. "Analysis of the Plan Fronteras for Clean Cooking in Ecuador," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 135-145.
    13. Bautista, Santiago, 2012. "A sustainable scenario for Venezuelan power generation sector in 2050 and its costs," Energy Policy, Elsevier, vol. 44(C), pages 331-340.
    14. Islas, Jorge & Manzini, Fabio & Masera, Omar, 2007. "A prospective study of bioenergy use in Mexico," Energy, Elsevier, vol. 32(12), pages 2306-2320.
    15. Cai, Wenjia & Wang, Can & Wang, Ke & Zhang, Ying & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's electricity sector," Energy Policy, Elsevier, vol. 35(12), pages 6445-6456, December.
    16. Larsen, Peter H. & Goldman, Charles A. & Satchwell, Andrew, 2012. "Evolution of the U.S. energy service company industry: Market size and project performance from 1990–2008," Energy Policy, Elsevier, vol. 50(C), pages 802-820.
    17. Shabbir, Rabia & Ahmad, Sheikh Saeed, 2010. "Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model," Energy, Elsevier, vol. 35(5), pages 2323-2332.
    18. He, K. & Lei, Y. & Pan, X. & Zhang, Y. & Zhang, Q. & Chen, D., 2010. "Co-benefits from energy policies in China," Energy, Elsevier, vol. 35(11), pages 4265-4272.
    19. Kim, Hoseok & Shin, Eui-soon & Chung, Woo-jin, 2011. "Energy demand and supply, energy policies, and energy security in the Republic of Korea," Energy Policy, Elsevier, vol. 39(11), pages 6882-6897.
    20. Ates, Seyithan A., 2015. "Energy efficiency and CO2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system," Energy, Elsevier, vol. 90(P1), pages 417-428.
    21. Davoudpour, Hamid & Ahadi, Mohammad Sadegh, 2006. "The potential for greenhouse gases mitigation in household sector of Iran: cases of price reform/efficiency improvement and scenario for 2000-2010," Energy Policy, Elsevier, vol. 34(1), pages 40-49, January.
    22. Wang, Ke & Wang, Can & Lu, Xuedu & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry," Energy Policy, Elsevier, vol. 35(4), pages 2320-2335, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernandez Vazquez, Carlos A.A. & Vansighen, Thomas & Fernandez Fuentes, Miguel H. & Quoilin, Sylvain, 2024. "Energy transition implications for Bolivia. Long-term modelling with short-term assessment of future scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Wambui, Valentine & Njoka, Francis & Muguthu, Joseph & Ndwali, Patrick, 2022. "Scenario analysis of electricity pathways in Kenya using Low Emissions Analysis Platform and the Next Energy Modeling system for optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Espinoza, Vicente Sebastian & Fontalvo, Javier & Martí-Herrero, Jaime & Miguel, Luis Javier & Mediavilla, Margarita, 2022. "Analysis of energy future pathways for Ecuador facing the prospects of oil availability using a system dynamics model. Is degrowth inevitable?," Energy, Elsevier, vol. 259(C).
    4. Vicente Sebastian Espinoza & Javier Fontalvo & Paola Ramírez & Jaime Martí-Herrero & Margarita Mediavilla, 2022. "Energy Transition Scenarios for Fossil Fuel Rich Developing Countries under Constraints on Oil Availability: The Case of Ecuador," Energies, MDPI, vol. 15(19), pages 1-25, September.
    5. Federico Córdova-González & Eduardo García Meléndez & Montserrat Ferrer Juliá & Daniel Icaza, 2024. "Analysis for the Implementation of Distributed Renewable Energy Generation Systems for Areas of High Vulnerability Due to Hillside Movements: Case Study of Marianza-Cuenca, Ecuador," Energies, MDPI, vol. 17(7), pages 1-30, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    2. Ahanchian, Mohammad & Biona, Jose Bienvenido Manuel, 2014. "Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila," Energy Policy, Elsevier, vol. 66(C), pages 615-629.
    3. Kale, Rajesh V. & Pohekar, Sanjay D., 2014. "Electricity demand and supply scenarios for Maharashtra (India) for 2030: An application of long range energy alternatives planning," Energy Policy, Elsevier, vol. 72(C), pages 1-13.
    4. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    5. Subramanyam, Veena & Kumar, Amit & Talaei, Alireza & Mondal, Md. Alam Hossain, 2017. "Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector," Energy, Elsevier, vol. 118(C), pages 795-807.
    6. Chuan Tian & Guohui Feng & Shuai Li & Fuqiang Xu, 2019. "Scenario Analysis on Energy Consumption and CO 2 Emissions Reduction Potential in Building Heating Sector at Community Level," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    7. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
    8. Halkos, George & Tzeremes, Panagiotis, 2015. "Assessing greenhouse gas emissions in Estonia's energy system," MPRA Paper 66105, University Library of Munich, Germany.
    9. Halkos, George & Tzeremes, Panagiotis, 2015. "Scenario analysis on greenhouse gas emissions reduction in Southeast Balkans' energy system," MPRA Paper 65280, University Library of Munich, Germany.
    10. Liu, Lei & Wang, Ke & Wang, Shanshan & Zhang, Ruiqin & Tang, Xiaoyan, 2018. "Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 382-396.
    11. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    12. Mina Masoomi & Mostafa Panahi & Reza Samadi, 2022. "Demand side management for electricity in Iran: cost and emission analysis using LEAP modeling framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5667-5693, April.
    13. Zhang, Dongyu & Liu, Gengyuan & Chen, Caocao & Zhang, Yan & Hao, Yan & Casazza, Marco, 2019. "Medium-to-long-term coupled strategies for energy efficiency and greenhouse gas emissions reduction in Beijing (China)," Energy Policy, Elsevier, vol. 127(C), pages 350-360.
    14. El-Sayed, Ahmed Hassan A. & Khalil, Adel & Yehia, Mohamed, 2023. "Modeling alternative scenarios for Egypt 2050 energy mix based on LEAP analysis," Energy, Elsevier, vol. 266(C).
    15. Shahid, Muhammad & Ullah, Kafait & Imran, Kashif & Masroor, Neha & Sajid, Muhammad Bilal, 2022. "Economic and environmental analysis of green transport penetration in Pakistan," Energy Policy, Elsevier, vol. 166(C).
    16. Yang, Dewei & Liu, Dandan & Huang, Anmin & Lin, Jianyi & Xu, Lingxing, 2021. "Critical transformation pathways and socio-environmental benefits of energy substitution using a LEAP scenario modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Pedro Gerber Machado & Ana Carolina Rodrigues Teixeira & Flavia Mendes de Almeida Collaço & Adam Hawkes & Dominique Mouette, 2020. "Assessment of Greenhouse Gases and Pollutant Emissions in the Road Freight Transport Sector: A Case Study for São Paulo State, Brazil," Energies, MDPI, vol. 13(20), pages 1-26, October.
    18. Hasan Volkan Oral & Hasan Saygin, 2019. "Simulating the future energy consumption and greenhouse gas emissions of Turkish cement industry up to 2030 in a global context," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1461-1482, December.
    19. Park, Nyun-Bae & Yun, Sun-Jin & Jeon, Eui-Chan, 2013. "An analysis of long-term scenarios for the transition to renewable energy in the Korean electricity sector," Energy Policy, Elsevier, vol. 52(C), pages 288-296.
    20. McPherson, Madeleine & Karney, Bryan, 2014. "Long-term scenario alternatives and their implications: LEAP model application of Panama׳s electricity sector," Energy Policy, Elsevier, vol. 68(C), pages 146-157.

    More about this item

    Keywords

    Energy scenarios; Energy efficiency; LEAP;
    All these keywords.

    JEL classification:

    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2018-04-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.