IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v116y2018icp382-396.html
   My bibliography  Save this article

Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050

Author

Listed:
  • Liu, Lei
  • Wang, Ke
  • Wang, Shanshan
  • Zhang, Ruiqin
  • Tang, Xiaoyan

Abstract

With the accelerating process of urbanization, energy consumption and emissions of the transport sector in China have increased rapidly. In this paper, we employed the LEAP (Long-range Energy Alternatives Planning system) model to estimate the energy consumption, CO2 (carbon dioxide) and air pollutant emissions of the transport sector between 2010 and 2050 under four scenarios: Business as Usual (BAU), Energy Efficiency Improvement (EEI), Transport Mode Optimization (TMO), and Comprehensive Policy (CP). Furthermore, the intake fraction method was adopted to assess the health benefits of reducing pollutant emissions. The results showed that energy consumption will reach 509–1284 Mtce under the different scenarios by 2050. The emissions of CO2, carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxide (NOX) and particulate matter (PM10 and PM2.5) will be 2601, 173, 3.4, 24.0, 0.94 and 0.78 Mt, respectively, under the BAU scenario in 2050. Regarding health benefits, economic losses caused by mortality will be reduced by 47, 40 and 72 billion USD in 2050 under the EEI, TMO and CP scenarios, respectively, compared to those under the BAU scenario. Among the health outcomes associated with PM10, acute bronchitis exhibits the worst outcome. Considering health impacts, policy implications are suggested to reduce CO2 and pollutant emissions.

Suggested Citation

  • Liu, Lei & Wang, Ke & Wang, Shanshan & Zhang, Ruiqin & Tang, Xiaoyan, 2018. "Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 382-396.
  • Handle: RePEc:eee:enepol:v:116:y:2018:i:c:p:382-396
    DOI: 10.1016/j.enpol.2018.02.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518300958
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.02.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bin Fang & Chun-Feng Liu & Le- Zou & Yi-Ming Wei, 2012. "The assessment of health impact caused by energy use in urban areas of China: an intake fraction–based analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(1), pages 101-114, May.
    2. Cai, Wenjia & Wang, Can & Chen, Jining & Wang, Ke & Zhang, Ying & Lu, Xuedu, 2008. "Comparison of CO2 emission scenarios and mitigation opportunities in China's five sectors in 2020," Energy Policy, Elsevier, vol. 36(3), pages 1181-1194, March.
    3. Zhang, Hui & Zhang, Bing & Bi, Jun, 2015. "More efforts, more benefits: Air pollutant control of coal-fired power plants in China," Energy, Elsevier, vol. 80(C), pages 1-9.
    4. Liu, Xue & Ma, Shoufeng & Tian, Junfang & Jia, Ning & Li, Geng, 2015. "A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing," Energy Policy, Elsevier, vol. 85(C), pages 253-270.
    5. Lu-Yi Qiu & Ling-Yun He, 2017. "Are Chinese Green Transport Policies Effective? A New Perspective from Direct Pollution Rebound Effect, and Empirical Evidence From the Road Transport Sector," Sustainability, MDPI, vol. 9(3), pages 1-11, March.
    6. He, Ling-Yun & Chen, Yu, 2013. "Thou shalt drive electric and hybrid vehicles: Scenario analysis on energy saving and emission mitigation for road transportation sector in China," Transport Policy, Elsevier, vol. 25(C), pages 30-40.
    7. Wang, Ke & Wang, Shanshan & Liu, Lei & Yue, Hui & Zhang, Ruiqin & Tang, Xiaoyan, 2016. "Environmental co-benefits of energy efficiency improvement in coal-fired power sector: A case study of Henan Province, China," Applied Energy, Elsevier, vol. 184(C), pages 810-819.
    8. Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
    9. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    10. Cai, Wenjia & Wang, Can & Wang, Ke & Zhang, Ying & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's electricity sector," Energy Policy, Elsevier, vol. 35(12), pages 6445-6456, December.
    11. HE, Ling-Yun & QIU, Lu-Yi, 2016. "Transport demand, harmful emissions, environment and health co-benefits in China," Energy Policy, Elsevier, vol. 97(C), pages 267-275.
    12. Lu-Yi Qiu & Ling-Yun He, 2017. "Can Green Traffic Policies Affect Air Quality? Evidence from A Difference-in-Difference Estimation in China," Sustainability, MDPI, vol. 9(6), pages 1-10, June.
    13. N. Künzli & R. Kaiser & S. Medina & M. Studnicka & O. Chanel & P. Filliger & M. Herry & F. Horak & V. Puybonnieux-Texier & Philippe Quénel & Jodi Schneider & R. Seethaler & Jean-Christophe Vergnaud & , 2000. "Public health Impact of Outdoor and Traffic related Air Pollution," Post-Print halshs-00150955, HAL.
    14. Chen, Su-Mei & He, Ling-Yun, 2014. "Welfare loss of China's air pollution: How to make personal vehicle transportation policy," China Economic Review, Elsevier, vol. 31(C), pages 106-118.
    15. Yin, Xiang & Chen, Wenying & Eom, Jiyong & Clarke, Leon E. & Kim, Son H. & Patel, Pralit L. & Yu, Sha & Kyle, G. Page, 2015. "China's transportation energy consumption and CO2 emissions from a global perspective," Energy Policy, Elsevier, vol. 82(C), pages 233-248.
    16. Hao, Han & Geng, Yong & Li, Weiqi & Guo, Bin, 2015. "Energy consumption and GHG emissions from China's freight transport sector: Scenarios through 2050," Energy Policy, Elsevier, vol. 85(C), pages 94-101.
    17. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions," Energy Policy, Elsevier, vol. 38(8), pages 3943-3956, August.
    18. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi & Hang, Wen, 2015. "Scenario analysis of energy consumption and greenhouse gas emissions from China's passenger vehicles," Energy, Elsevier, vol. 91(C), pages 151-159.
    19. Shabbir, Rabia & Ahmad, Sheikh Saeed, 2010. "Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model," Energy, Elsevier, vol. 35(5), pages 2323-2332.
    20. Huang, Yophy & Bor, Yunchang Jeffrey & Peng, Chieh-Yu, 2011. "The long-term forecast of Taiwan’s energy supply and demand: LEAP model application," Energy Policy, Elsevier, vol. 39(11), pages 6790-6803.
    21. Amirnekooei, K. & Ardehali, M.M. & Sadri, A., 2012. "Integrated resource planning for Iran: Development of reference energy system, forecast, and long-term energy-environment plan," Energy, Elsevier, vol. 46(1), pages 374-385.
    22. Dhar, Subash & Shukla, Priyadarshi R., 2015. "Low carbon scenarios for transport in India: Co-benefits analysis," Energy Policy, Elsevier, vol. 81(C), pages 186-198.
    23. Ke, Jing & Zheng, Nina & Fridley, David & Price, Lynn & Zhou, Nan, 2012. "Potential energy savings and CO2 emissions reduction of China's cement industry," Energy Policy, Elsevier, vol. 45(C), pages 739-751.
    24. McPherson, Madeleine & Karney, Bryan, 2014. "Long-term scenario alternatives and their implications: LEAP model application of Panama׳s electricity sector," Energy Policy, Elsevier, vol. 68(C), pages 146-157.
    25. Saboori, Behnaz & Sapri, Maimunah & bin Baba, Maizan, 2014. "Economic growth, energy consumption and CO2 emissions in OECD (Organization for Economic Co-operation and Development)'s transport sector: A fully modified bi-directional relationship approach," Energy, Elsevier, vol. 66(C), pages 150-161.
    26. Takeshita, Takayuki, 2012. "Assessing the co-benefits of CO2 mitigation on air pollutants emissions from road vehicles," Applied Energy, Elsevier, vol. 97(C), pages 225-237.
    27. P. Filliger & M. Herry & F. Horak & V. Puybonnieux-Texier & P. Quenel & J. Schneider & R.K. Seethaler & J.C. Vernaud & H. Sommer & N. Künzli & R. Kaiser & S. Medina & M. Studnicka & Olivier Chanel, 2000. "Public-health impact of outdoor and traffic-related air pollution: a European assessment," Post-Print hal-01462907, HAL.
    28. Chavez-Baeza, Carlos & Sheinbaum-Pardo, Claudia, 2014. "Sustainable passenger road transport scenarios to reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City Metropolitan Area," Energy, Elsevier, vol. 66(C), pages 624-634.
    29. Wang, Ke & Wang, Can & Lu, Xuedu & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry," Energy Policy, Elsevier, vol. 35(4), pages 2320-2335, April.
    30. HE Ling-Yun & OU Jia-Jia, 2016. "Taxing sulphur dioxide emissions: A policy evaluation from public health perspective in China," Energy & Environment, , vol. 27(6-7), pages 755-764, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu-Yi Qiu & Ling-Yun He, 2017. "Can Green Traffic Policies Affect Air Quality? Evidence from A Difference-in-Difference Estimation in China," Sustainability, MDPI, vol. 9(6), pages 1-10, June.
    2. Rashid Khan, Haroon Ur & Siddique, Muhammad & Zaman, Khalid & Yousaf, Sheikh Usman & Shoukry, Alaa Mohamd & Gani, Showkat & Sasmoko, & Khan, Aqeel & Hishan, Sanil S. & Saleem, Hummera, 2018. "The impact of air transportation, railways transportation, and port container traffic on energy demand, customs duty, and economic growth: Evidence from a panel of low-, middle-, and high -income coun," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 18-35.
    3. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    4. Lu-Yi Qiu & Ling-Yun He, 2017. "Are Chinese Green Transport Policies Effective? A New Perspective from Direct Pollution Rebound Effect, and Empirical Evidence From the Road Transport Sector," Sustainability, MDPI, vol. 9(3), pages 1-11, March.
    5. Bwo-Ren Ke & Shyang-Chyuan Fang & Jun-Hong Lai, 2022. "Adjustment of bus departure time of an electric bus transportation system for reducing costs and carbon emissions: A case study in Penghu," Energy & Environment, , vol. 33(4), pages 728-751, June.
    6. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    7. Ahanchian, Mohammad & Biona, Jose Bienvenido Manuel, 2014. "Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila," Energy Policy, Elsevier, vol. 66(C), pages 615-629.
    8. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
    9. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    10. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    11. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    12. Vicente Sebastian Espinoza & Veronica Guayanlema & Javier Mart nez-G mez, 2018. "Energy Efficiency Plan Benefits in Ecuador: Long-range Energy Alternative Planning Model," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 52-54.
    13. Li, Jingjing & Jiao, Jianling & Tang, Yunshu, 2020. "Analysis of the impact of policies intervention on electric vehicles adoption considering information transmission—based on consumer network model," Energy Policy, Elsevier, vol. 144(C).
    14. Feiqi Liu & Fuquan Zhao & Zongwei Liu & Han Hao, 2018. "China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts," Energies, MDPI, vol. 11(12), pages 1-19, November.
    15. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    16. Kale, Rajesh V. & Pohekar, Sanjay D., 2014. "Electricity demand and supply scenarios for Maharashtra (India) for 2030: An application of long range energy alternatives planning," Energy Policy, Elsevier, vol. 72(C), pages 1-13.
    17. Rauf, Abdul & Zhang, Jin & Li, Jinkai & Amin, Waqas, 2018. "Structural changes, energy consumption and carbon emissions in China: Empirical evidence from ARDL bound testing model," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 194-206.
    18. Rith, Monorom & Fillone, Alexis M. & Biona, Jose Bienvenido Manuel M., 2020. "Energy and environmental benefits and policy implications for private passenger vehicles in an emerging metropolis of Southeast Asia – A case study of Metro Manila," Applied Energy, Elsevier, vol. 275(C).
    19. Ling-Yun He & Sheng Yang & Dongfeng Chang, 2017. "Oil Price Uncertainty, Transport Fuel Demand and Public Health," IJERPH, MDPI, vol. 14(3), pages 1-19, March.
    20. Ates, Seyithan A., 2015. "Energy efficiency and CO2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system," Energy, Elsevier, vol. 90(P1), pages 417-428.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:116:y:2018:i:c:p:382-396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.