IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v6y2014i7p4273-4286d37981.html
   My bibliography  Save this article

GM Crops, Organic Agriculture and Breeding for Sustainability

Author

Listed:
  • Salvatore Ceccarelli

    (The International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 114/5055, Beirut 1108-2010, Lebanon)

Abstract

The ongoing debate about the use of genetically-modified (GM) crops in agriculture has largely focused on food safety and genetic contamination issues. Given that the majority of GM crops have been produced to respond to the problem of crop yield reductions caused by diseases, insects and weeds, the paper argues that in those cases, the currently used GM crops are an unstable solution to the problem, because they represent such a strong selection pressure, that pests rapidly evolve resistance. Organic agriculture practices provide a more sustainable way of producing healthy food; however, the lower yields often associated with those practices, making the resultant healthy food more expensive, open the criticism that such practices will not be able to feed human populations. Evolutionary plant breeding offers the possibility of using the evolutionary potential of crops to our advantage by producing a continuous flow of varieties better adapted to organic systems, to climate change and to the ever changing spectrum of pests, without depending on chemical control.

Suggested Citation

  • Salvatore Ceccarelli, 2014. "GM Crops, Organic Agriculture and Breeding for Sustainability," Sustainability, MDPI, vol. 6(7), pages 1-14, July.
  • Handle: RePEc:gam:jsusta:v:6:y:2014:i:7:p:4273-4286:d:37981
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/6/7/4273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/6/7/4273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fuglie, Keith O. & Heisey, Paul W. & King, John L. & Day-Rubenstein, Kelly & Schimmelpfennig, David & Wang, Sun Ling, 2011. "Research Investments and Market Structure in the Food Processing, Agricultural Input, and Biofuel Industries Worldwide: Executive Summary," Economic Information Bulletin 291936, United States Department of Agriculture, Economic Research Service.
    2. Martin S. Wolfe, 2000. "Crop strength through diversity," Nature, Nature, vol. 406(6797), pages 681-682, August.
    3. de Ponti, Tomek & Rijk, Bert & van Ittersum, Martin K., 2012. "The crop yield gap between organic and conventional agriculture," Agricultural Systems, Elsevier, vol. 108(C), pages 1-9.
    4. Nelson, Gerald C. & Rosegrant, Mark W. & Koo, Jawoo & Robertson, Richard & Sulser, Timothy & Zhu, Tingju & Ringler, Claudia & Msangi, Siwa & Palazzo, Amanda & Batka, Miroslav & Magalhaes, Marilia & Va, 2009. "Climate change: Impact on agriculture and costs of adaptation," Food policy reports 21, International Food Policy Research Institute (IFPRI).
    5. Daniel P. Bebber & Mark A. T. Ramotowski & Sarah J. Gurr, 2013. "Crop pests and pathogens move polewards in a warming world," Nature Climate Change, Nature, vol. 3(11), pages 985-988, November.
    6. Levi T. Morran & Michelle D. Parmenter & Patrick C. Phillips, 2009. "Mutation load and rapid adaptation favour outcrossing over self-fertilization," Nature, Nature, vol. 462(7271), pages 350-352, November.
    7. Allen G Good & Perrin H Beatty, 2011. "Fertilizing Nature: A Tragedy of Excess in the Commons," PLOS Biology, Public Library of Science, vol. 9(8), pages 1-9, August.
    8. Allen G Good & Perrin H Beatty, 2011. "Fertilizing Nature: A Tragedy of Excess in the Commons," Working Papers id:4387, eSocialSciences.
    9. Fernandez-Cornejo, Jorge & Livingston, Michael J. & Mitchell, Lorraine & Wechsler, Seth, 2014. "Genetically Engineered Crops in the United States," Economic Research Report 164263, United States Department of Agriculture, Economic Research Service.
    10. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    11. Deepak K. Ray & Navin Ramankutty & Nathaniel D. Mueller & Paul C. West & Jonathan A. Foley, 2012. "Recent patterns of crop yield growth and stagnation," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    12. David W. Crowder & Tobin D. Northfield & Michael R. Strand & William E. Snyder, 2010. "Organic agriculture promotes evenness and natural pest control," Nature, Nature, vol. 466(7302), pages 109-112, July.
    13. Fuglie, Keith O. & Heisey, Paul W. & King, John L. & Day-Rubenstein, Kelly A. & Schimmelpfennig, David E. & Wang, Sun Ling, 2011. "Research Investments and Market Structure in the Food Processing, Agricultural Input, and Biofuel Industries Worldwide," Economic Research Report 120324, United States Department of Agriculture, Economic Research Service.
    14. Thomas F. Döring & Samuel Knapp & Geza Kovacs & Kevin Murphy & Martin S. Wolfe, 2011. "Evolutionary Plant Breeding in Cereals—Into a New Era," Sustainability, MDPI, vol. 3(10), pages 1-28, October.
    15. Patricio Grassini & Kent M. Eskridge & Kenneth G. Cassman, 2013. "Distinguishing between yield advances and yield plateaus in historical crop production trends," Nature Communications, Nature, vol. 4(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rae Zimmerman & Quanyan Zhu & Carolyn Dimitri, 2016. "Promoting resilience for food, energy, and water interdependencies," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 50-61, March.
    2. Yue Zhang & Yingying Sun, 2018. "The Effect of Ideology on Attitudes toward GM Food Safety among Chinese Internet Users," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    3. Edwin Nuijten & Monika M. Messmer & Edith T. Lammerts van Bueren, 2016. "Concepts and Strategies of Organic Plant Breeding in Light of Novel Breeding Techniques," Sustainability, MDPI, vol. 9(1), pages 1-19, December.
    4. Lauren Brzozowski & Michael Mazourek, 2018. "A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management," Sustainability, MDPI, vol. 10(6), pages 1-25, June.
    5. Fern Wickson & Rosa Binimelis & Amaranta Herrero, 2016. "Should Organic Agriculture Maintain Its Opposition to GM? New Techniques Writing the Same Old Story," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    6. Filippo Sgroi & Matteo Candela & Anna Maria Di Trapani & Mario Foderà & Riccardo Squatrito & Riccardo Testa & Salvatore Tudisca, 2015. "Economic and Financial Comparison between Organic and Conventional Farming in Sicilian Lemon Orchards," Sustainability, MDPI, vol. 7(1), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauren Brzozowski & Michael Mazourek, 2018. "A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management," Sustainability, MDPI, vol. 10(6), pages 1-25, June.
    2. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    3. Marie Lassalas & Sabine Duvaleix & Laure Latruffe, 2024. "The technical and economic effects of biodiversity standards on wheat production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(2), pages 275-308.
    4. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    5. Greene, Catherine & Wechsler, Seth J. & Adalja, Aaron & Hanson, James, 2016. "Economic Issues in the Coexistence of Organic, Genetically Engineered (GE), and Non-GE Crops," Economic Information Bulletin 232929, United States Department of Agriculture, Economic Research Service.
    6. Jean-Paul Chavas & Guanming Shi & Kyle Stiegert, 2020. "Pricing and Industry Structure when Demand Elasticity Changes," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 57(4), pages 891-907, December.
    7. Edwin Nuijten & Monika M. Messmer & Edith T. Lammerts van Bueren, 2016. "Concepts and Strategies of Organic Plant Breeding in Light of Novel Breeding Techniques," Sustainability, MDPI, vol. 9(1), pages 1-19, December.
    8. Aparajita Goyal & John Nash, 2016. "Reaping Richer Returns, Preliminary Overview," World Bank Publications - Reports 25782, The World Bank Group.
    9. Parvathi, Priyanka & Waibel, Hermann, 2015. "Is Organic Agriculture and Fair Trade Certification a way out of Crisis? Evidence from Black Pepper Farmers in India," 55th Annual Conference, Giessen, Germany, September 23-25, 2015 209209, German Association of Agricultural Economists (GEWISOLA).
    10. Marco Medici & S?ren Marcus Pedersen & Giacomo Carli & Maria Rita Tagliaventi, 2019. "Environmental Benefits of Precision Agriculture Adoption," Economia agro-alimentare, FrancoAngeli Editore, vol. 21(3), pages 637-656.
    11. Atanu Mukherjee & Emmanuel C. Omondi & Paul R. Hepperly & Rita Seidel & Wade P. Heller, 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    12. Nicholas Bloom & Charles I. Jones & John Van Reenen & Michael Webb, 2020. "Are Ideas Getting Harder to Find?," American Economic Review, American Economic Association, vol. 110(4), pages 1104-1144, April.
    13. Simona Menardo & Giacomo Lanza & Werner Berg, 2021. "The Effect of Diet and Farm Management on N 2 O Emissions from Dairy Farms Estimated from Farm Data," Agriculture, MDPI, vol. 11(7), pages 1-19, July.
    14. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    15. Janet MacFall & Joanna Lelekacs & Todd LeVasseur & Steve Moore & Jennifer Walker, 2015. "Toward resilient food systems through increased agricultural diversity and local sourcing in the Carolinas," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(4), pages 608-622, December.
    16. Anderson Jock R. & Birner Regina & Nagarajan Latha & Naseem Anwar & Pray Carl E., 2021. "Private Agricultural R&D: Do the Poor Benefit?," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 19(1), pages 3-14, May.
    17. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    18. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    19. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    20. Bang, Rasmus & Hansen, Bjørn Gunnar & Guajardo, Mario & Sommerseth, Jon Kristian & Flaten, Ola & Asheim, Leif Jarle, 2024. "Conventional or organic cattle farming? Trade-offs between crop yield, livestock capacity, organic premiums, and government payments," Agricultural Systems, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:6:y:2014:i:7:p:4273-4286:d:37981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.