IDEAS home Printed from https://ideas.repec.org/a/spr/ssefpa/v12y2020i6d10.1007_s12571-020-01090-3.html
   My bibliography  Save this article

Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture

Author

Listed:
  • Nesar Ahmed

    (University of Manitoba
    Deakin University)

  • Shirley Thompson

    (University of Manitoba)

  • Giovanni M. Turchini

    (Deakin University)

Abstract

Organic aquaculture originated from the organic agriculture movement. Organic fish farming is an ecosystem-based management system, which was developed as a potential substitute to address environmental constraints faced by intensive aquaculture. However, the transformation from conventional aquaculture to organic aquaculture is a multidimensional, complex, and expensive process. The further development of organic aquaculture can be enhanced by establishing uniform organic aquaculture standards. Converting to organic aquaculture brings a wide range of environmental advantages. Nevertheless, organic yields are significantly lower than those of modern aquaculture, which will reduce its contribution to global food security. To meet global demand for fish and seafood from an increasing human population, food production from aquaculture must be enhanced since production from capture fisheries has remained stagnant. Because aquaculture is associated with various environmental constraints, a further increase in fish production will encounter diverse environmental challenges. Greater use of organic aquaculture practices will help to diminish environmental footprints of aquaculture. We propose that fish production could increase through the sustainable intensification of a combination of production systems, including polyculture, integrated aquaculture, and organic aquaculture.

Suggested Citation

  • Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
  • Handle: RePEc:spr:ssefpa:v:12:y:2020:i:6:d:10.1007_s12571-020-01090-3
    DOI: 10.1007/s12571-020-01090-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12571-020-01090-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12571-020-01090-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Ponti, Tomek & Rijk, Bert & van Ittersum, Martin K., 2012. "The crop yield gap between organic and conventional agriculture," Agricultural Systems, Elsevier, vol. 108(C), pages 1-9.
    2. Anthony Trewavas, 2001. "Urban myths of organic farming," Nature, Nature, vol. 410(6827), pages 409-410, March.
    3. Marschke, Melissa & Wilkings, Ann, 2014. "Is certification a viable option for small producer fish farmers in the global south? Insights from Vietnam," Marine Policy, Elsevier, vol. 50(PA), pages 197-206.
    4. Rosamond L. Naylor & Rebecca J. Goldburg & Jurgenne H. Primavera & Nils Kautsky & Malcolm C. M. Beveridge & Jason Clay & Carl Folke & Jane Lubchenco & Harold Mooney & Max Troell, 2000. "Effect of aquaculture on world fish supplies," Nature, Nature, vol. 405(6790), pages 1017-1024, June.
    5. Frank Eyhorn & Adrian Muller & John P. Reganold & Emile Frison & Hans R. Herren & Louise Luttikholt & Alexander Mueller & Jürn Sanders & Nadia El-Hage Scialabba & Verena Seufert & Pete Smith, 2019. "Sustainability in global agriculture driven by organic farming," Nature Sustainability, Nature, vol. 2(4), pages 253-255, April.
    6. Lucile Muneret & Matthew Mitchell & Verena Seufert & Stéphanie Aviron & El Aziz Djoudi & Julien Pétillon & Manuel Plantegenest & Denis Thiéry & Adrien Rusch, 2018. "Evidence that organic farming promotes pest control," Nature Sustainability, Nature, vol. 1(7), pages 361-368, July.
    7. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    8. Jessica Aschemann-Witzel & Stephan Zielke, 2017. "Can't Buy Me Green? A Review of Consumer Perceptions of and Behavior Toward the Price of Organic Food," Journal of Consumer Affairs, Wiley Blackwell, vol. 51(1), pages 211-251, March.
    9. Ankamah-Yeboah, Isaac & Nielsen, Max & Nielsen, Rasmus, 2016. "Price premium of organic salmon in Danish retail sale," Ecological Economics, Elsevier, vol. 122(C), pages 54-60.
    10. Adrian Muller & Christian Schader & Nadia El-Hage Scialabba & Judith Brüggemann & Anne Isensee & Karl-Heinz Erb & Pete Smith & Peter Klocke & Florian Leiber & Matthias Stolze & Urs Niggli, 2017. "Strategies for feeding the world more sustainably with organic agriculture," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    11. Tiffany L. Fess & Vagner A. Benedito, 2018. "Organic versus Conventional Cropping Sustainability: A Comparative System Analysis," Sustainability, MDPI, vol. 10(1), pages 1-42, January.
    12. Seufert, Verena & Ramankutty, Navin & Mayerhofer, Tabea, 2017. "What is this thing called organic? – How organic farming is codified in regulations," Food Policy, Elsevier, vol. 68(C), pages 10-20.
    13. Asche, Frank & Larsen, Thomas A. & Smith, Martin D. & Sogn-Grundvåg, Geir & Young, James A., 2015. "Pricing of eco-labels with retailer heterogeneity," Food Policy, Elsevier, vol. 53(C), pages 82-93.
    14. Martina Lori & Sarah Symnaczik & Paul Mäder & Gerlinde De Deyn & Andreas Gattinger, 2017. "Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-25, July.
    15. Nhan, Dang K. & Phong, Le T. & Verdegem, Marc J.C. & Duong, Le T. & Bosma, Roel H. & Little, David C., 2007. "Integrated freshwater aquaculture, crop and livestock production in the Mekong delta, Vietnam: Determinants and the role of the pond," Agricultural Systems, Elsevier, vol. 94(2), pages 445-458, May.
    16. Smith, Laurence G. & Jones, Philip J. & Kirk, Guy J.D. & Pearce, Bruce D. & Williams, Adrian. G., 2018. "Modelling the production impacts of a widespread conversion to organic agriculture in England and Wales," Land Use Policy, Elsevier, vol. 76(C), pages 391-404.
    17. Madan M. Dey & Ferdinand J. Paraguas & Patrick Kambewa & Diemuth E. Pemsl, 2010. "The impact of integrated aquaculture–agriculture on small‐scale farms in Southern Malawi," Agricultural Economics, International Association of Agricultural Economists, vol. 41(1), pages 67-79, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anugu Amarender Reddy & Indrek Melts & Geetha Mohan & Ch Radhika Rani & Vaishnavi Pawar & Vikas Singh & Manesh Choubey & Trupti Vashishtha & A Suresh & Madhusudan Bhattarai, 2022. "Economic Impact of Organic Agriculture: Evidence from a Pan-India Survey," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    2. Shahnaj Akter & Shahjahan Ali & Mária Fekete-Farkas & Csaba Fogarassy & Zoltán Lakner, 2023. "Why Organic Food? Factors Influence the Organic Food Purchase Intension in an Emerging Country (Study from Northern Part of Bangladesh)," Resources, MDPI, vol. 12(1), pages 1-19, January.
    3. Ingunn Y. Gudbrandsdottir & Nína M. Saviolidis & Gudrun Olafsdottir & Gudmundur V. Oddsson & Hlynur Stefansson & Sigurdur G. Bogason, 2021. "Transition Pathways for the Farmed Salmon Value Chain: Industry Perspectives and Sustainability Implications," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    4. Joanna Smoluk-Sikorska & Magdalena Śmiglak-Krajewska & Stanislav Rojík & Pavlína Rojík Fulnečková, 2023. "Prices of Organic Food—The Gap between Willingness to Pay and Price Premiums in the Organic Food Market in Poland," Agriculture, MDPI, vol. 14(1), pages 1-19, December.
    5. Sylvain Charlebois & Keshava Pallavi Gone & Swati Saxena & Stefanie Colombo & Bibhuti Sarker, 2024. "Assessing Consumer Implications of Reduced Salmon Supply and Environmental Impact in North America," Sustainability, MDPI, vol. 16(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debuschewitz, Emil & Sanders, Jürn, 2021. "Bewertung der Umweltwirkungen des ökologischen Landbaus im Kontext der kontroversen wissenschaftlichen Diskurse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317076, German Association of Agricultural Economists (GEWISOLA).
    2. Valeria Borsellino & Emanuele Schimmenti & Hamid El Bilali, 2020. "Agri-Food Markets towards Sustainable Patterns," Sustainability, MDPI, vol. 12(6), pages 1-35, March.
    3. Atanu Mukherjee & Emmanuel C. Omondi & Paul R. Hepperly & Rita Seidel & Wade P. Heller, 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    4. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    5. Barbieri, Pietro & Starck, Thomas & Voisin, Anne-Sophie & Nesme, Thomas, 2023. "Biological nitrogen fixation of legumes crops under organic farming as driven by cropping management: A review," Agricultural Systems, Elsevier, vol. 205(C).
    6. Niraj Prakash Joshi & Luni Piya, 2021. "Food and Nutrient Supply from Organic Agriculture in the Least Developed Countries and North America," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    7. Anna Kuczuk & Katarzyna Widera, 2021. "A Greater Share of Organic Agriculture in Relation to Food Security Resulting from the Energy Demand Obtained from Food—Scenarios for Poland until 2030," Energies, MDPI, vol. 14(21), pages 1-19, October.
    8. Natalia Brzezina & Katharina Biely & Ariella Helfgott & Birgit Kopainsky & Joost Vervoort & Erik Mathijs, 2017. "Development of Organic Farming in Europe at the Crossroads: Looking for the Way Forward through System Archetypes Lenses," Sustainability, MDPI, vol. 9(5), pages 1-23, May.
    9. Bang, Rasmus & Hansen, Bjørn Gunnar & Guajardo, Mario & Sommerseth, Jon Kristian & Flaten, Ola & Asheim, Leif Jarle, 2024. "Conventional or organic cattle farming? Trade-offs between crop yield, livestock capacity, organic premiums, and government payments," Agricultural Systems, Elsevier, vol. 218(C).
    10. Patrick M. Carr & Greta G. Gramig & Mark A. Liebig, 2013. "Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality," Sustainability, MDPI, vol. 5(7), pages 1-30, July.
    11. Lombardi, G.V. & Parrini, Silvia & Atzori, R. & Stefani, G. & Romano, D. & Gastaldi, M. & Liu, G., 2021. "Sustainable agriculture, food security and diet diversity. The case study of Tuscany, Italy," Ecological Modelling, Elsevier, vol. 458(C).
    12. Aleksandra Kowalska & Milena Bieniek, 2022. "Meeting the European green deal objective of expanding organic farming," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(3), pages 607-633, September.
    13. Lauren Brzozowski & Michael Mazourek, 2018. "A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management," Sustainability, MDPI, vol. 10(6), pages 1-25, June.
    14. José Luis Aleixandre & José Luis Aleixandre-Tudó & Máxima Bolaños-Pizarro & Rafael Aleixandre-Benavent, 2015. "Mapping the scientific research in organic farming: a bibliometric review," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 295-309, October.
    15. Zagata, Lukas & Uhnak, Tomas & Hrabák, Jiří, 2021. "Moderately radical? Stakeholders' perspectives on societal roles and transformative potential of organic agriculture," Ecological Economics, Elsevier, vol. 190(C).
    16. Ostandie, Noémie & Giffard, Brice & Tolle, Pauline & Ugaglia, Adeline Alonso & Thiéry, Denis & Rusch, Adrien, 2022. "Organic viticulture leads to lower trade-offs between agroecosystem goods but does not improve overall multifunctionality," Agricultural Systems, Elsevier, vol. 203(C).
    17. Bronnmann, Julia & Asche, Frank, 2017. "Sustainable Seafood From Aquaculture and Wild Fisheries: Insights From a Discrete Choice Experiment in Germany," Ecological Economics, Elsevier, vol. 142(C), pages 113-119.
    18. Radka Redlichová & Gabriela Chmelíková & Ivana Blažková & Eliška Svobodová & Inez Naaki Vanderpuje, 2021. "Organic Food Needs More Land and Direct Energy to Be Produced Compared to Food from Conventional Farming: Empirical Evidence from the Czech Republic," Agriculture, MDPI, vol. 11(9), pages 1-19, August.
    19. Gökhan Uzel & Serkan Gürlük & Esma Aslak & Feza Karaer, 2022. "Land use preferences considering resource economics: case of organic versus conventional wheat production in Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14375-14392, December.
    20. Joseph, Sarah & Peters, Irene & Friedrich, Hanno, 2019. "Can Regional Organic Agriculture Feed the Regional Community? A Case Study for Hamburg and North Germany," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssefpa:v:12:y:2020:i:6:d:10.1007_s12571-020-01090-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.