IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2994-d1369790.html
   My bibliography  Save this article

Enhancing Sustainable Mobility: Evaluating New Bicycle and Pedestrian Links to Car-Oriented Industrial Parks with ARAS-G MCDM Approach

Author

Listed:
  • Jurgis Zagorskas

    (Department of Engineering Graphics, Faculty of Fundamental Sciences, VILNIUSTECH, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania)

  • Zenonas Turskis

    (The Institute of Sustainable Construction, Faculty of Civil Engineering, VILNIUSTECH, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania)

Abstract

The aim of this research is to address the challenge of transforming car-oriented industrial parks into pedestrian- and bicycle-friendly environments. Through the implementation of a multi-criteria decision-making (MCDM) approach, the study aims to evaluate alternative pathway connections and assess their potential impact on bicycle and pedestrian traffic volumes. By enhancing the connectivity of the cycling pathway network, the research seeks to demonstrate the potential for substantial increases in cycling and walking within industrial zones. This research leverages a multi-criteria decision-making framework, specifically the ARAS-G method, and integrates geographic information system analysis alongside Python scripting to project future bicycle usage and assess alternative pathway connections. The study underscores the potential for substantial increases in cycling and walking by augmenting the connectivity of the cycling pathway network. The findings hold practical significance for urban planners and industrial zone developers, advocating a holistic approach to sustainable transportation. The research contributes a comprehensive set of criteria encompassing connectivity, safety, accessibility, efficiency, integration within the urban fabric, and cost-effectiveness to evaluate sustainability and prioritize actions and measures for reestablishing industrial zones as bicycle-friendly spaces.

Suggested Citation

  • Jurgis Zagorskas & Zenonas Turskis, 2024. "Enhancing Sustainable Mobility: Evaluating New Bicycle and Pedestrian Links to Car-Oriented Industrial Parks with ARAS-G MCDM Approach," Sustainability, MDPI, vol. 16(7), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2994-:d:1369790
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2994/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2994/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Margherita Pazzini & Leonardo Cameli & Claudio Lantieri & Valeria Vignali & Giulio Dondi & Thomas Jonsson, 2022. "New Micromobility Means of Transport: An Analysis of E-Scooter Users’ Behaviour in Trondheim," IJERPH, MDPI, vol. 19(12), pages 1-17, June.
    2. Maren Schnieder & Chris Hinde & Andrew West, 2022. "Emission Estimation of On-Demand Meal Delivery Services Using a Macroscopic Simulation," IJERPH, MDPI, vol. 19(18), pages 1-17, September.
    3. Nadia Femmam & Moufida Boukhabla & Said Mazouz & Asma Femmam, 2023. "Analysis and reading of the quality of an urban public space via space syntax," Technium Social Sciences Journal, Technium Science, vol. 39(1), pages 554-568, January.
    4. Tomáš Skrúcaný & Martin Kendra & Ondrej Stopka & Saša Milojević & Tomasz Figlus & Csaba Csiszár, 2019. "Impact of the Electric Mobility Implementation on the Greenhouse Gases Production in Central European Countries," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    5. Wei, Xintong & Qiu, Rui & Liang, Yongtu & Liao, Qi & Klemeš, Jiří Jaromír & Xue, Jinjun & Zhang, Haoran, 2022. "Roadmap to carbon emissions neutral industrial parks: Energy, economic and environmental analysis," Energy, Elsevier, vol. 238(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filip Škultéty & Dominika Beňová & Jozef Gnap, 2021. "City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    2. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    3. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    4. Dawei Feng & Wenchao Xu & Xinyu Gao & Yun Yang & Shirui Feng & Xiaohu Yang & Hailong Li, 2023. "Carbon Emission Prediction and the Reduction Pathway in Industrial Parks: A Scenario Analysis Based on the Integration of the LEAP Model with LMDI Decomposition," Energies, MDPI, vol. 16(21), pages 1-15, October.
    5. Cempírek Václav & Rybicka Iwona & Ljubaj Ivica, 2019. "Development of Electromobility in Terms of Freight Transport," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 10(2), pages 23-32, November.
    6. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    7. Shi, Mengshu & Wang, Weiye & Han, Yaxuan & Huang, Yuansheng, 2022. "Research on comprehensive benefit of hydrogen storage in microgrid system," Renewable Energy, Elsevier, vol. 194(C), pages 621-635.
    8. Shobande, Olatunji & Asongu, Simplice, 2021. "The rise and fall of the energy-carbon Kuznets curve: Evidence from Africa," MPRA Paper 110852, University Library of Munich, Germany.
    9. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    10. Du, Weijian & Li, Mengjie, 2023. "Opening the black box of environmental governance: Environmental target constraints and industrial firm pollution reduction," Energy, Elsevier, vol. 283(C).
    11. Han, Yongming & Cao, Lian & Guo, Qing & Geng, Zhiqiang & Yang, Weiyang & Fan, Jinzhen & Liu, Min, 2024. "Economy and carbon dioxide emissions effects of energy structures in China: Evidence based on a novel AHP-SBMDEA model," Energy, Elsevier, vol. 290(C).
    12. Carlos Armenta-Déu, 2024. "Improving Sustainability in Urban and Road Transportation: Dual Battery Block and Fuel Cell Hybrid Power System for Electric Vehicles," Sustainability, MDPI, vol. 16(5), pages 1-21, March.
    13. Wojciech Lewicki & Wojciech Drozdz, 2021. "Electromobility and its Development Prospects in the Context of Industry 4.0: A Comparative Study of Poland and the European Union," European Research Studies Journal, European Research Studies Journal, vol. 0(2B), pages 135-144.
    14. Anastasovski, Aleksandar, 2023. "What is needed for transformation of industrial parks into potential positive energy industrial parks? A review," Energy Policy, Elsevier, vol. 173(C).
    15. Wojciech Lewicki & Wojciech Drozdz & Piotr Wroblewski & Krzysztof Zarna, 2021. "The Road to Electromobility in Poland: Consumer Attitude Assessment," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 28-39.
    16. Du, Yanxiang & Liang, Jin & Yang, Shiliang & Hu, Jianhang & Bao, Guirong & Wang, Hua, 2022. "Numerical investigation of the Ni-based catalytic methanation process in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 257(C).
    17. Mohammad Junaid & Zsolt Szalay & Árpád Török, 2021. "Evaluation of Non-Classical Decision-Making Methods in Self Driving Cars: Pedestrian Detection Testing on Cluster of Images with Different Luminance Conditions," Energies, MDPI, vol. 14(21), pages 1-16, November.
    18. Bubelíny Oliver & Ďaďová Irina & Kubina Milan & Soviar Jakub, 2019. "The Use of Smart Elements for the Transport Operation in the Slovak Cities," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 10(2), pages 51-60, November.
    19. Zhang, Zhonglian & Yang, Xiaohui & Yang, Li & Wang, Zhaojun & Huang, Zezhong & Wang, Xiaopeng & Mei, Linghao, 2023. "Optimal configuration of double carbon energy system considering climate change," Energy, Elsevier, vol. 283(C).
    20. Krystian Pietrzak & Oliwia Pietrzak & Andrzej Montwiłł, 2023. "A Study on the Effects of Applying Cargo Delivery Systems to Support Energy Transition in Agglomeration Areas—An Example of the Szczecin Agglomeration, Poland," Energies, MDPI, vol. 16(24), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2994-:d:1369790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.