IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223025823.html
   My bibliography  Save this article

Optimal configuration of double carbon energy system considering climate change

Author

Listed:
  • Zhang, Zhonglian
  • Yang, Xiaohui
  • Yang, Li
  • Wang, Zhaojun
  • Huang, Zezhong
  • Wang, Xiaopeng
  • Mei, Linghao

Abstract

How to achieve the “double carbon” goal in energy systems has been the concern of governments. Integrated energy system (IES) is affected by climate change during his operation, in order to study the impact of climate change on IES and achieve the “double carbon” goal in energy systems, this paper proposes an integrated machine learning(IML) to forecast the long-term load, then investigates IES costs and carbon emissions in relation to climate, followed by the establishment of carbon peak energy system(CPES) and carbon neutral energy system(CNES), finally the honey badger algorithm is used to optimize the configuration of CPES and CNES. The results show that: IML can accurately make load forecasts. Under climate change, changes in load reduce the cost and carbon emissions of IES, and changes in equipment efficiency increase the cost and carbon emissions of IES. When both are considered, the cost and carbon emissions of IES increase by 1.18% and 0.92% per decade respectively. The costs of CPES and CNES increase by 0.93% and 1% respectively for every 10 years earlier than the year of achievement. To meet China’s “double carbon” goal, CPES and CNES need to increase their costs by 1.97% and 2% respectively.

Suggested Citation

  • Zhang, Zhonglian & Yang, Xiaohui & Yang, Li & Wang, Zhaojun & Huang, Zezhong & Wang, Xiaopeng & Mei, Linghao, 2023. "Optimal configuration of double carbon energy system considering climate change," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025823
    DOI: 10.1016/j.energy.2023.129188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Han & Chaffart, Donovan & Ricardez-Sandoval, Luis A., 2019. "Modelling and optimization of a pilot-scale entrained-flow gasifier using artificial neural networks," Energy, Elsevier, vol. 188(C).
    2. Finkenrath, Matthias & Faber, Till & Behrens, Fabian & Leiprecht, Stefan, 2022. "Holistic modelling and optimisation of thermal load forecasting, heat generation and plant dispatch for a district heating network," Energy, Elsevier, vol. 250(C).
    3. Hashim, Fatma A. & Houssein, Essam H. & Hussain, Kashif & Mabrouk, Mai S. & Al-Atabany, Walid, 2022. "Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 84-110.
    4. Li, Peidu & Gao, Xiaoqing & Li, Zhenchao & Zhou, Xiyin, 2022. "Effect of the temperature difference between land and lake on photovoltaic power generation," Renewable Energy, Elsevier, vol. 185(C), pages 86-95.
    5. Nantian Huang & Guobo Lu & Dianguo Xu, 2016. "A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest," Energies, MDPI, vol. 9(10), pages 1-24, September.
    6. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    7. Li, Chuang & Li, Guojie & Wang, Keyou & Han, Bei, 2022. "A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems," Energy, Elsevier, vol. 259(C).
    8. Laith Abualigah & Raed Abu Zitar & Khaled H. Almotairi & Ahmad MohdAziz Hussein & Mohamed Abd Elaziz & Mohammad Reza Nikoo & Amir H. Gandomi, 2022. "Wind, Solar, and Photovoltaic Renewable Energy Systems with and without Energy Storage Optimization: A Survey of Advanced Machine Learning and Deep Learning Techniques," Energies, MDPI, vol. 15(2), pages 1-26, January.
    9. Lee, Juyong & Cho, Youngsang, 2022. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Energy, Elsevier, vol. 239(PD).
    10. Ma, Weiwu & Fang, Song & Liu, Gang, 2017. "Hybrid optimization method and seasonal operation strategy for distributed energy system integrating CCHP, photovoltaic and ground source heat pump," Energy, Elsevier, vol. 141(C), pages 1439-1455.
    11. Patrón, Gabriel D. & Ricardez-Sandoval, Luis, 2022. "An integrated real-time optimization, control, and estimation scheme for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 308(C).
    12. Yang, Xiaohui & Liu, Kang & Leng, Zhengyang & Liu, Tao & Zhang, Liufang & Mei, Linghao, 2022. "Multi-dimensions analysis of solar hybrid CCHP systems with redundant design," Energy, Elsevier, vol. 253(C).
    13. Wei, Xintong & Qiu, Rui & Liang, Yongtu & Liao, Qi & Klemeš, Jiří Jaromír & Xue, Jinjun & Zhang, Haoran, 2022. "Roadmap to carbon emissions neutral industrial parks: Energy, economic and environmental analysis," Energy, Elsevier, vol. 238(PA).
    14. Nadjemi, O. & Nacer, T. & Hamidat, A. & Salhi, H., 2017. "Optimal hybrid PV/wind energy system sizing: Application of cuckoo search algorithm for Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1352-1365.
    15. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    2. Yang, Xiaohui & Zhang, Zhonglian & Mei, Linghao & Wang, Xiaopeng & Deng, Yeheng & Wei, Shi & Liu, Xiaoping, 2023. "Optimal configuration of improved integrated energy system based on stepped carbon penalty response and improved power to gas," Energy, Elsevier, vol. 263(PD).
    3. Yang, Xiaohui & Huang, Zezhong & Xiao, Riying & Wu, Chilv & Zhang, Zhonglian & Mei, Linghao, 2024. "Optimisation and analysis of an integrated energy system with hydrogen supply using solar spectral beam splitting pre-processing," Energy, Elsevier, vol. 287(C).
    4. Varbanov, Petar Sabev & Wang, Bohong & Ocłoń, Paweł & Radziszewska-Zielina, Elżbieta & Ma, Ting & Klemeš, Jiří Jaromír & Jia, Xuexiu, 2023. "Efficiency measures for energy supply and use aiming for a clean circular economy," Energy, Elsevier, vol. 283(C).
    5. Migo-Sumagang, Maria Victoria & Tan, Raymond R. & Aviso, Kathleen B., 2023. "A multi-period model for optimizing negative emission technology portfolios with economic and carbon value discount rates," Energy, Elsevier, vol. 275(C).
    6. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    7. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    8. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    9. Hegazy Rezk & A. G. Olabi & Mohammad Ali Abdelkareem & Abdul Hai Alami & Enas Taha Sayed, 2023. "Optimal Parameter Determination of Membrane Bioreactor to Boost Biohydrogen Production-Based Integration of ANFIS Modeling and Honey Badger Algorithm," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    10. Jonathan Berrisch & Micha{l} Narajewski & Florian Ziel, 2022. "High-Resolution Peak Demand Estimation Using Generalized Additive Models and Deep Neural Networks," Papers 2203.03342, arXiv.org, revised Nov 2022.
    11. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2021. "Multi-objective optimization and evaluation of hybrid CCHP systems for different building types," Energy, Elsevier, vol. 215(PA).
    12. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    13. Baohong Jin & Zhichao Liu & Yichuan Liao, 2023. "Exploring the Impact of Regional Integrated Energy Systems Performance by Energy Storage Devices Based on a Bi-Level Dynamic Optimization Model," Energies, MDPI, vol. 16(6), pages 1-21, March.
    14. Zou, Dexuan & Gong, Dunwei & Ouyang, Haibin, 2023. "The dynamic economic emission dispatch of the combined heat and power system integrated with a wind farm and a photovoltaic plant," Applied Energy, Elsevier, vol. 351(C).
    15. Mahamed G. H. Omran & Maurice Clerc & Fatme Ghaddar & Ahmad Aldabagh & Omar Tawfik, 2022. "Permutation Tests for Metaheuristic Algorithms," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    16. Jin, Baohong, 2023. "Impact of renewable energy penetration in power systems on the optimization and operation of regional distributed energy systems," Energy, Elsevier, vol. 273(C).
    17. Ren, Haoshan & Ma, Zhenjun & Fai Norman Tse, Chung & Sun, Yongjun, 2022. "Optimal control of solar-powered electric bus networks with improved renewable energy on-site consumption and reduced grid dependence," Applied Energy, Elsevier, vol. 323(C).
    18. Deepika Bishnoi & Harsh Chaturvedi, 2022. "Optimal Design of a Hybrid Energy System for Economic and Environmental Sustainability of Onshore Oil and Gas Fields," Energies, MDPI, vol. 15(6), pages 1-21, March.
    19. Du, Weijian & Li, Mengjie, 2023. "Opening the black box of environmental governance: Environmental target constraints and industrial firm pollution reduction," Energy, Elsevier, vol. 283(C).
    20. Chenyang Gao & Teng Li & Yuelin Gao & Ziyu Zhang, 2024. "A Comprehensive Multi-Strategy Enhanced Biogeography-Based Optimization Algorithm for High-Dimensional Optimization and Engineering Design Problems," Mathematics, MDPI, vol. 12(3), pages 1-35, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.