IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223031808.html
   My bibliography  Save this article

Economy and carbon dioxide emissions effects of energy structures in China: Evidence based on a novel AHP-SBMDEA model

Author

Listed:
  • Han, Yongming
  • Cao, Lian
  • Guo, Qing
  • Geng, Zhiqiang
  • Yang, Weiyang
  • Fan, Jinzhen
  • Liu, Min

Abstract

With the completion of the poverty alleviation task in China, the Chinese economy has made great breakthroughs. Meanwhile, the implementation of Chinese "dual carbon" goal has entered an important window period of both strategic opportunities and difficulties. The emission of carbon dioxide (CO2) leads to the greenhouse effect, which affects the sustainable development of society. Therefore, this paper proposes an improved analytic hierarchy process (AHP) with Slacks-based measure integrating data envelopment analysis (SBMDEA) (AHP-SBMDEA) based efficiency evaluation model for different provincial-level administrative regions in China, which is used to analyze and optimize the Chinese energy structure of different provincial-level administrative regions. With coal, gasoline, petroleum, fuel oil, diesel, crude oil and natural gas as inputs, the per capita Gross Domestic Product (GDP) as the desired output and the CO2 as the undesired output, after linear weighted calculation of the results of the AHP-SP model and the SBMDEA model, the energy efficiency evaluation model of different provincial administrative regions in China is established. The results show that there is a large difference in efficiency between Chinese northern and southern regions, and the overall efficiency of southern regions is higher than that of northern regions. In addition, it is easier to find out the optimal energy efficiency benchmark, which can provide suggestions and help to guide the energy consumption input structure improvement of other inefficient provincial-level administrative regions. Furthermore, the energy structure can also be adjusted through the redundant variable calculated by the SBMDEA model. For example, Sichuan Province can reduce the consumption of the coal, the gasoline, the diesel, the fuel oil, the crude oil and the natural gas by 5269.95 ×10000 tons (WT), 513.01 WT, 59.05 WT, 34.37 WT, 4,73.33 WT and 130.37 billion cubic meters (BCM), respectively. Its CO2 emissions can be reduced by 1925.4 WT, and raise the efficiency of energy utilization in the province.

Suggested Citation

  • Han, Yongming & Cao, Lian & Guo, Qing & Geng, Zhiqiang & Yang, Weiyang & Fan, Jinzhen & Liu, Min, 2024. "Economy and carbon dioxide emissions effects of energy structures in China: Evidence based on a novel AHP-SBMDEA model," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223031808
    DOI: 10.1016/j.energy.2023.129786
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129786?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, Xiwang & Ma, Minda & Ma, Xin & Chen, Liming & Cai, Weiguang & Feng, Wei & Ma, Zhili, 2022. "Historical decarbonization of global commercial building operations in the 21st century," Applied Energy, Elsevier, vol. 322(C).
    2. Liu, Haiyue & Zhang, Ruchuan & Zhou, Li & Li, Aijun, 2023. "Evaluating the financial performance of companies from the perspective of fund procurement and application: New strategy cross efficiency network data envelopment analysis models," Energy, Elsevier, vol. 269(C).
    3. Xiaochun Zhao & Huixin Xu & Qun Sun, 2022. "Research on China’s Carbon Emission Efficiency and Its Regional Differences," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    4. Yong-Hong Kuo & Andrew Kusiak, 2019. "From data to big data in production research: the past and future trends," International Journal of Production Research, Taylor & Francis Journals, vol. 57(15-16), pages 4828-4853, August.
    5. Linlin Yao & Paravee Maneejuk & Woraphon Yamaka & Jianxu Liu, 2022. "Quantifying the Competitiveness of Cultural Industry and Its Impacts on Chinese Economic Growth," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
    6. Shu Zhang & Wenying Chen, 2022. "Assessing the energy transition in China towards carbon neutrality with a probabilistic framework," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Orla A. Murphy & Ping Wang & Sunny X. Wang & Greg Tkacz, 2013. "An economic efficiency study on different regions of Ghana via Slack-based data envelopment analysis and regression analysis," Applied Economics, Taylor & Francis Journals, vol. 45(34), pages 4773-4780, December.
    8. Hao Chen & Zongxue Xu & Yang Liu & Yixuan Huang & Fang Yang, 2022. "Urban Flood Risk Assessment Based on Dynamic Population Distribution and Fuzzy Comprehensive Evaluation," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    9. Zhang, Tiantian & Nakagawa, Kei & Matsumoto, Ken'ichi, 2023. "Evaluating solar photovoltaic power efficiency based on economic dimensions for 26 countries using a three-stage data envelopment analysis," Applied Energy, Elsevier, vol. 335(C).
    10. Liu, Fangmei & Li, Li & Ye, Bin & Qin, Quande, 2023. "A novel stochastic semi-parametric frontier-based three-stage DEA window model to evaluate China's industrial green economic efficiency," Energy Economics, Elsevier, vol. 119(C).
    11. Li, Ke & Zou, Danyu & Li, Hailing, 2023. "Environmental regulation and green technical efficiency: A process-level data envelopment analysis from Chinese iron and steel enterprises," Energy, Elsevier, vol. 277(C).
    12. Tomasz Żyłowski & Jerzy Kozyra, 2023. "Crop Cultivation Efficiency and GHG Emission: SBM-DEA Model with Undesirable Output Approach," Sustainability, MDPI, vol. 15(13), pages 1-18, July.
    13. Wei, Xintong & Qiu, Rui & Liang, Yongtu & Liao, Qi & Klemeš, Jiří Jaromír & Xue, Jinjun & Zhang, Haoran, 2022. "Roadmap to carbon emissions neutral industrial parks: Energy, economic and environmental analysis," Energy, Elsevier, vol. 238(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Tao & Zhang, Jun & Su, Liangbin & Wang, Gang & Yu, Wan & Su, Huashan & Xiao, Renzheng, 2024. "Performance optimization and techno-economic analysis of a novel geothermal system," Energy, Elsevier, vol. 301(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olawale Ogunrinde & Ekundayo Shittu, 2023. "Benchmarking performance of photovoltaic power plants in multiple periods," Environment Systems and Decisions, Springer, vol. 43(3), pages 489-503, September.
    2. Junhui Huang & Sakdirat Kaewunruen, 2023. "Forecasting Energy Consumption of a Public Building Using Transformer and Support Vector Regression," Energies, MDPI, vol. 16(2), pages 1-15, January.
    3. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    4. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    5. Zhang, Gaohang & Li, Fengting & Wang, Sen & Yin, Chunya, 2023. "Robust low-carbon energy and reserve scheduling considering operational risk and flexibility improvement," Energy, Elsevier, vol. 284(C).
    6. Dawei Feng & Wenchao Xu & Xinyu Gao & Yun Yang & Shirui Feng & Xiaohu Yang & Hailong Li, 2023. "Carbon Emission Prediction and the Reduction Pathway in Industrial Parks: A Scenario Analysis Based on the Integration of the LEAP Model with LMDI Decomposition," Energies, MDPI, vol. 16(21), pages 1-15, October.
    7. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    8. Jiang, Hong-Dian & Pradhan, Basanta K. & Dong, Kangyin & Yu, Yan-Yan & Liang, Qiao-Mei, 2024. "An economy-wide impacts of multiple mitigation pathways toward carbon neutrality in China: A CGE-based analysis," Energy Economics, Elsevier, vol. 129(C).
    9. Shi, Mengshu & Wang, Weiye & Han, Yaxuan & Huang, Yuansheng, 2022. "Research on comprehensive benefit of hydrogen storage in microgrid system," Renewable Energy, Elsevier, vol. 194(C), pages 621-635.
    10. Ray Qing Cao & Dara G. Schniederjans & Vicky Ching Gu, 2021. "Stakeholder sentiment in service supply chains: big data meets agenda-setting theory," Service Business, Springer;Pan-Pacific Business Association, vol. 15(1), pages 151-175, March.
    11. Xian, Yujiao & Hu, Zhihui & Wang, Ke, 2023. "The least-cost abatement measure of carbon emissions for China's glass manufacturing industry based on the marginal abatement costs," Energy, Elsevier, vol. 284(C).
    12. Luigi Maffei & Antonio Ciervo & Achille Perrotta & Massimiliano Masullo & Antonio Rosato, 2023. "Innovative Energy-Efficient Prefabricated Movable Buildings for Smart/Co-Working: Performance Assessment upon Varying Building Configurations," Sustainability, MDPI, vol. 15(12), pages 1-37, June.
    13. Qi, Ye & Lu, Jiaqi & Liu, Tianle, 2024. "Measuring energy transition away from fossil fuels: A new index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    14. Wang, Xiaolei & Deng, Renxin & Yang, Yufang, 2023. "The spatiotemporal effect of factor price distortion on capacity utilization in China’s iron and steel industry," Resources Policy, Elsevier, vol. 86(PA).
    15. João Mello & Cristina de Lorenzo & Fco. Alberto Campos & José Villar, 2023. "Pricing and Simulating Energy Transactions in Energy Communities," Energies, MDPI, vol. 16(4), pages 1-22, February.
    16. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    17. Kou, Xiaoxue & Wang, Ruzhu, 2023. "Thermodynamic analysis of electric to thermal heating pathways coupled with thermal energy storage," Energy, Elsevier, vol. 284(C).
    18. Olatunji A. Shobande & Simplice A. Asongu, 2021. "The rise and fall of the energy-carbon Kuznets curve: Evidence from Africa," Working Papers 21/069, European Xtramile Centre of African Studies (EXCAS).
    19. Zhao, Congyu & Dong, Kangyin & Jiang, Hong-Dian & Wang, Kun & Dong, Xiucheng, 2023. "How does energy poverty eradication realize the path to carbon unlocking? The case of China," Energy Economics, Elsevier, vol. 121(C).
    20. Ailian Zhang & Mengmeng Pan, 2020. "“Smart Process” of Medical Innovation: The Synergism Based on Network and Physical Space," IJERPH, MDPI, vol. 17(11), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223031808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.