IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5357-d1508251.html
   My bibliography  Save this article

Air Pollutant Emissions of Passenger Cars in Poland in Terms of Their Environmental Impact and Type of Energy Consumption

Author

Listed:
  • Piotr Pryciński

    (Faculty of Transport, Warsaw University of Technology, 00-661 Warszawa, Poland)

  • Piotr Pielecha

    (Faculty of Civil and Transport Engineering, Doctoral School, Poznan University of Technology, 60-965 Poznan, Poland)

  • Jarosław Korzeb

    (Faculty of Transport, Warsaw University of Technology, 00-661 Warszawa, Poland)

  • Jacek Pielecha

    (Faculty of Civil and Transport Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

  • Mariusz Kostrzewski

    (Faculty of Transport, Warsaw University of Technology, 00-661 Warszawa, Poland)

  • Ahmed Eliwa

    (Doctoral School, Warsaw University of Technology, 00-661 Warszawa, Poland)

Abstract

The increasing number of vehicles operating in Poland, especially passenger vehicles, justifies the need to conduct air pollution emission tests in the context of the impact of vehicles on the natural environment. Firstly, this article reviews the publications related to air pollutant emissions and passenger vehicles traveling on Polish roads. However, it presents a special method using advanced research equipment to determine air pollutant emissions. The above research methods are justified in implementing clean transport zones. Real Driving Emissions represent an essential procedure in the implementation of clean transport zones in Poland, verifying the actual emissions of air pollutants and modeling this phenomenon using the results of real air pollutant emissions. The results of this research state that establishing a link between a vehicle’s air pollutant emissions and its age can support making transport or delivery planning more sustainable and choosing less carbon-intensive means of transport to reduce the negative impact of transport on the environment. The scientific novelty of the proposed solutions is the verification of the actual emissions of Euro 6 vehicles and the modeling of air pollutant emissions as a function of speed and acceleration. The research results are included in this article and will become input data for further analysis in examining the impact of vehicle operating age on air pollution emissions. Consequently, the novelty of the present research also lies in its focus on the verification of the impact of operating age, particularly in the context of vehicles exceeding 15 years of age, on air pollutant emissions. By establishing a correlation between a vehicle’s air pollutant emissions and its operating age, it becomes possible to make transport or delivery planning more sustainable. Furthermore, the selection of less carbon-intensive means of transport can contribute to reducing the negative impact of transport on the environment.

Suggested Citation

  • Piotr Pryciński & Piotr Pielecha & Jarosław Korzeb & Jacek Pielecha & Mariusz Kostrzewski & Ahmed Eliwa, 2024. "Air Pollutant Emissions of Passenger Cars in Poland in Terms of Their Environmental Impact and Type of Energy Consumption," Energies, MDPI, vol. 17(21), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5357-:d:1508251
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5357/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5357/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomáš Skrúcaný & Martin Kendra & Ondrej Stopka & Saša Milojević & Tomasz Figlus & Csaba Csiszár, 2019. "Impact of the Electric Mobility Implementation on the Greenhouse Gases Production in Central European Countries," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    2. Oreggioni, G.D. & Mahiques, O. & Monforti-Ferrario, F. & Schaaf, E. & Muntean, M. & Guizzardi, D. & Vignati, E. & Crippa, M., 2022. "The impacts of technological changes and regulatory frameworks on global air pollutant emissions from the energy industry and road transport," Energy Policy, Elsevier, vol. 168(C).
    3. Marianna Jacyna & Renata Żochowska & Aleksander Sobota & Mariusz Wasiak, 2021. "Scenario Analyses of Exhaust Emissions Reduction through the Introduction of Electric Vehicles into the City," Energies, MDPI, vol. 14(7), pages 1-33, April.
    4. Piotr Pryciński & Róża Wawryszczuk & Jarosław Korzeb & Piotr Pielecha, 2023. "Indicator Method for Determining the Emissivity of Road Transport Means from the Point of Supplied Energy," Energies, MDPI, vol. 16(12), pages 1-22, June.
    5. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2021. "Effects of passenger load, road grade, and congestion level on real-world fuel consumption and emissions from compressed natural gas and diesel urban buses," Applied Energy, Elsevier, vol. 282(PB).
    6. Maciej Siedlecki & Natalia Szymlet & Paweł Fuć & Beata Kurc, 2022. "Analysis of the Possibilities of Reduction of Exhaust Emissions from a Farm Tractor by Retrofitting Exhaust Aftertreatment," Energies, MDPI, vol. 15(21), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Pryciński & Jacek Pielecha & Jarosław Korzeb & Roland Jachimowski & Piotr Pielecha, 2025. "Impact of Vehicle Aging and Mileage on Air Pollution Emissions," Energies, MDPI, vol. 18(4), pages 1-20, February.
    2. Piotr Pryciński & Róża Wawryszczuk & Jarosław Korzeb & Piotr Pielecha, 2023. "Indicator Method for Determining the Emissivity of Road Transport Means from the Point of Supplied Energy," Energies, MDPI, vol. 16(12), pages 1-22, June.
    3. Filip Škultéty & Dominika Beňová & Jozef Gnap, 2021. "City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    4. Tang, Tianfeng & Peng, Qianlong & Shi, Qing & Peng, Qingguo & Zhao, Jin & Chen, Chaoyi & Wang, Guangwei, 2024. "Energy management of fuel cell hybrid electric bus in mountainous regions: A deep reinforcement learning approach considering terrain characteristics," Energy, Elsevier, vol. 311(C).
    5. Fei Ma & Yujie Zhu & Kum Fai Yuen & Qipeng Sun & Haonan He & Xiaobo Xu & Zhen Shang & Yan Xu, 2022. "Exploring the Spatiotemporal Evolution and Sustainable Driving Factors of Information Flow Network: A Public Search Attention Perspective," IJERPH, MDPI, vol. 19(1), pages 1-25, January.
    6. Agnieszka Merkisz-Guranowska & Natalya Shramenko & Marcin Kiciński & Vladyslav Shramenko, 2023. "Simulation Model for Operational Planning of City Cargo Transportation by Trams in Conditions of Stochastic Demand," Energies, MDPI, vol. 16(10), pages 1-20, May.
    7. Miroslaw Smieszek & Vasyl Mateichyk & Jakub Mosciszewski, 2024. "The Influence of Stops on the Selected Route of the City ITS on the Energy Efficiency of the Public Bus," Energies, MDPI, vol. 17(16), pages 1-26, August.
    8. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    9. Duan, Xiongbo & Feng, Lining & Liu, Haibo & Jiang, Pengfei & Chen, Chao & Sun, Zhiqiang, 2023. "Experimental investigation on exhaust emissions of a heavy-duty vehicle powered by a methanol-fuelled spark ignition engine under world Harmonized Transient Cycle and actual on-road driving conditions," Energy, Elsevier, vol. 282(C).
    10. repec:ers:journl:v:xxiv:y:2021:i:special1:p:28-39 is not listed on IDEAS
    11. Xiao Liang & Huifang Song & Gefan Wu & Yongjie Guo & Shu Zhang, 2024. "Complex Traffic Flow Model for Analysis and Optimization of Fuel Consumption and Emissions at Large Roundabouts," Sustainability, MDPI, vol. 16(21), pages 1-26, October.
    12. Janusz Figura & Teresa Gądek-Hawlena, 2022. "The Impact of the COVID-19 Pandemic on the Development of Electromobility in Poland. The Perspective of Companies in the Transport-Shipping-Logistics Sector: A Case Study," Energies, MDPI, vol. 15(4), pages 1-18, February.
    13. Weiwei Liu & Jianbei Liu & Qiang Yu & Donghui Shan & Chao Wang & Zhiwei Wu, 2024. "Optimal Speed Ranges for Different Vehicle Types for Exhaust Emission Control," Sustainability, MDPI, vol. 16(23), pages 1-21, November.
    14. Wojciech Lewicki & Wojciech Drozdz, 2021. "Electromobility and its Development Prospects in the Context of Industry 4.0: A Comparative Study of Poland and the European Union," European Research Studies Journal, European Research Studies Journal, vol. 0(2 - Part ), pages 135-144.
    15. Sebastian Grzesiak & Adam Sulich, 2022. "Car Engines Comparative Analysis: Sustainable Approach," Energies, MDPI, vol. 15(14), pages 1-15, July.
    16. Katarzyna Kubiak-Wójcicka & Filip Polak & Leszek Szczęch, 2022. "Water Power Plants Possibilities in Powering Electric Cars—Case Study: Poland," Energies, MDPI, vol. 15(4), pages 1-17, February.
    17. Sebastian Szymon Grzesiak & Adam Sulich, 2023. "Electromobility: Logistics and Business Ecosystem Perspectives Review," Energies, MDPI, vol. 16(21), pages 1-27, October.
    18. Maria Cieśla & Elżbieta Macioszek, 2022. "The Perspective Projects Promoting Sustainable Mobility by Active Travel to School on the Example of the Southern Poland Region," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    19. Monika Ziemska-Osuch & Dawid Osuch, 2024. "Analysis of the Impact of Turn Signal Usage at Roundabouts on CO Emissions and Traffic Flows," Energies, MDPI, vol. 17(23), pages 1-11, December.
    20. Kirsi Spoof-Tuomi & Hans Arvidsson & Olav Nilsson & Seppo Niemi, 2022. "Real-Driving Emissions of an Aging Biogas-Fueled City Bus," Clean Technol., MDPI, vol. 4(4), pages 1-18, October.
    21. Avenali, Alessandro & De Santis, Daniele & Giagnorio, Mirko & Matteucci, Giorgio, 2024. "Bus fleet decarbonization under macroeconomic and technological uncertainties: A real options approach to support decision-making," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5357-:d:1508251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.