IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipbs0306261924005385.html
   My bibliography  Save this article

Carbon emissions accounting and estimation of carbon reduction potential in the operation phase of residential areas based on digital twin

Author

Listed:
  • Zhang, Anshan
  • Wang, Feiliang
  • Li, Huanyu
  • Pang, Bo
  • Yang, Jian

Abstract

The carbon emissions of the construction industry have raised a lot of concern as it contributes about one third of global carbon emissions. Among them, the operation of residential areas is an important source of carbon emissions. However, due to the complexity of carbon emission sources, it is difficult to account carbon emissions in the operation phase of residential areas. The assessment of the carbon reduction potential for the transition to low carbon residential areas is also inadequate. In this study, carbon emission sources and carbon reduction methods in residential areas have been sorted out, while the carbon emission accounting methods and the estimation methods for carbon reduction potential have been proposed. Moreover, this article first proposes a theoretical framework based on digital twin (DT) for carbon emissions accounting and estimation of carbon reduction potential in the operation phase of residential areas. In this framework, building information modelling (BIM) and remote sensing (RS) image processing technology are integrated, and specific application processes are proposed to improve the intelligence level of carbon emission accounting and carbon reduction potential assessment. Additionally, the feasibility of this method is verified using a campus residential area as a case study. The case study indicates that the method proposed in this article has great potential for application. It also shows that the carbon sinks and new energy sources are the effective method to achieve low or even zero carbon residential areas. In this case, >60% of carbon emissions can be offset through the comprehensive use of various carbon reduction measures.

Suggested Citation

  • Zhang, Anshan & Wang, Feiliang & Li, Huanyu & Pang, Bo & Yang, Jian, 2024. "Carbon emissions accounting and estimation of carbon reduction potential in the operation phase of residential areas based on digital twin," Applied Energy, Elsevier, vol. 376(PB).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924005385
    DOI: 10.1016/j.apenergy.2024.123155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924005385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen Chen & Zengfeng Zhao & Jianzhuang Xiao & Robert Tiong, 2021. "A Conceptual Framework for Estimating Building Embodied Carbon Based on Digital Twin Technology and Life Cycle Assessment," Sustainability, MDPI, vol. 13(24), pages 1-20, December.
    2. Timmerman, Jonas & Vandevelde, Lieven & Van Eetvelde, Greet, 2014. "Towards low carbon business park energy systems: Classification of techno-economic energy models," Energy, Elsevier, vol. 75(C), pages 68-80.
    3. Sakdirat Kaewunruen & Shijie Peng & Olisa Phil-Ebosie, 2020. "Digital Twin Aided Sustainability and Vulnerability Audit for Subway Stations," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    4. Kevin Robert Gurney & Paty Romero-Lankao & Karen C. Seto & Lucy R. Hutyra & Riley Duren & Christopher Kennedy & Nancy B. Grimm & James R. Ehleringer & Peter Marcotullio & Sara Hughes & Stephanie Pince, 2015. "Climate change: Track urban emissions on a human scale," Nature, Nature, vol. 525(7568), pages 179-181, September.
    5. Liu, Lingxuan & Zhang, Bing & Bi, Jun & Wei, Qi & He, Pan, 2012. "The greenhouse gas mitigation of industrial parks in China: A case study of Suzhou Industrial Park," Energy Policy, Elsevier, vol. 46(C), pages 301-307.
    6. Fang, Zigeng & Yan, Jiayi & Lu, Qiuchen & Chen, Long & Yang, Pu & Tang, Junqing & Jiang, Feng & Broyd, Tim & Hong, Jingke, 2023. "A systematic literature review of carbon footprint decision-making approaches for infrastructure and building projects," Applied Energy, Elsevier, vol. 335(C).
    7. Baoquan Cheng & Jingwei Li & Vivian W. Y. Tam & Ming Yang & Dong Chen, 2020. "A BIM-LCA Approach for Estimating the Greenhouse Gas Emissions of Large-Scale Public Buildings: A Case Study," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    8. Yang, Jingjing & Deng, Zhang & Guo, Siyue & Chen, Yixing, 2023. "Development of bottom-up model to estimate dynamic carbon emission for city-scale buildings," Applied Energy, Elsevier, vol. 331(C).
    9. Feng, Jing-Chun & Yan, Jinyue & Yu, Zhi & Zeng, Xuelan & Xu, Weijia, 2018. "Case study of an industrial park toward zero carbon emission," Applied Energy, Elsevier, vol. 209(C), pages 65-78.
    10. Sishen Wang & Hao Wang & Pengyu Xie & Xiaodan Chen, 2020. "Life-Cycle Assessment of Carbon Footprint of Bike-Share and Bus Systems in Campus Transit," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    11. Subhadra, Bobban G., 2010. "Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach," Energy Policy, Elsevier, vol. 38(10), pages 5892-5901, October.
    12. Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
    13. Fei Tao & Qinglin Qi, 2019. "Make more digital twins," Nature, Nature, vol. 573(7775), pages 490-491, September.
    14. Wang, Hongsheng & Lei, Yue & Wang, Haikun & Liu, Miaomiao & Yang, Jie & Bi, Jun, 2013. "Carbon reduction potentials of China's industrial parks: A case study of Suzhou Industry Park," Energy, Elsevier, vol. 55(C), pages 668-675.
    15. Fei Tao & Fangyuan Sui & Ang Liu & Qinglin Qi & Meng Zhang & Boyang Song & Zirong Guo & Stephen C.-Y. Lu & A. Y. C. Nee, 2019. "Digital twin-driven product design framework," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3935-3953, June.
    16. Wei, Xintong & Qiu, Rui & Liang, Yongtu & Liao, Qi & Klemeš, Jiří Jaromír & Xue, Jinjun & Zhang, Haoran, 2022. "Roadmap to carbon emissions neutral industrial parks: Energy, economic and environmental analysis," Energy, Elsevier, vol. 238(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta Thomas & Maria Ratajczak & Agnieszka Ślosarczyk, 2024. "Preliminary Analysis and Possibilities of Reducing the Carbon Footprint of Embedded Materials on the Example of Innovative Systemic Railway Stations (ISS)," Sustainability, MDPI, vol. 16(23), pages 1-15, November.
    2. Yang Yang & Hao Gao & Feng Gao & Yawei Du & Parastoo Maleki, 2024. "Carbon Resilience of University Campuses in Response to Carbon Risks: Connotative Characteristics, Influencing Factors, and Optimization Strategies," Sustainability, MDPI, vol. 16(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Ruoyu & Wang, Shanshan & Long, Wenqi & Gao, Gengyu & Liu, Donghui & Zhang, Ruiqin, 2021. "Uncovering GHG emission characteristics of industrial parks in Central China via emission inventory and cluster analysis," Energy Policy, Elsevier, vol. 151(C).
    2. Yan, Kun & Gao, Hanbo & Liu, Rui & Lyu, Yizheng & Wan, Mei & Tian, Jinping & Chen, Lyujun, 2024. "Review on low-carbon development in Chinese industrial parks driven by bioeconomy strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Jianmin You & Xiqiang Chen & Jindao Chen, 2021. "Decomposition of Industrial Electricity Efficiency and Electricity-Saving Potential of Special Economic Zones in China Considering the Heterogeneity of Administrative Hierarchy and Regional Location," Energies, MDPI, vol. 14(17), pages 1-22, September.
    4. Dong, Huijuan & Ohnishi, Satoshi & Fujita, Tsuyoshi & Geng, Yong & Fujii, Minoru & Dong, Liang, 2014. "Achieving carbon emission reduction through industrial & urban symbiosis: A case of Kawasaki," Energy, Elsevier, vol. 64(C), pages 277-286.
    5. Jian Zhang & Jingyang Liu & Li Dong & Qi Qiao, 2022. "CO 2 Emissions Inventory and Its Uncertainty Analysis of China’s Industrial Parks: A Case Study of the Maanshan Economic and Technological Development Area," IJERPH, MDPI, vol. 19(18), pages 1-14, September.
    6. Dawei Feng & Wenchao Xu & Xinyu Gao & Yun Yang & Shirui Feng & Xiaohu Yang & Hailong Li, 2023. "Carbon Emission Prediction and the Reduction Pathway in Industrial Parks: A Scenario Analysis Based on the Integration of the LEAP Model with LMDI Decomposition," Energies, MDPI, vol. 16(21), pages 1-15, October.
    7. Yu, Xiang & Chen, Hongbo & Wang, Bo & Wang, Ran & Shan, Yuli, 2018. "Driving forces of CO2 emissions and mitigation strategies of China’s National low carbon pilot industrial parks," Applied Energy, Elsevier, vol. 212(C), pages 1553-1562.
    8. Li, Ke & Yang, Rui & He, Xuanfang, 2024. "Realizing low-carbon development of industrial parks in China: Model construction and its application," Energy, Elsevier, vol. 301(C).
    9. Amelio, Andrea & Giardino-Karlinger, Liliane & Valletti, Tommaso, 2020. "Exclusionary pricing in two-sided markets," International Journal of Industrial Organization, Elsevier, vol. 73(C).
    10. Jian-Guo Duan & Tian-Yu Ma & Qing-Lei Zhang & Zhen Liu & Ji-Yun Qin, 2023. "Design and application of digital twin system for the blade-rotor test rig," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 753-769, February.
    11. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    12. Ma, Shuaiyin & Ding, Wei & Liu, Yang & Ren, Shan & Yang, Haidong, 2022. "Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries," Applied Energy, Elsevier, vol. 326(C).
    13. Cheng, Qi & Yang, Jun, 2024. "Is green place-based policy effective in mitigating pollution? Firm-level evidence from China," Economic Analysis and Policy, Elsevier, vol. 83(C), pages 530-547.
    14. Ágota Bányai & Tamás Bányai, 2022. "Real-Time Maintenance Policy Optimization in Manufacturing Systems: An Energy Efficiency and Emission-Based Approach," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    15. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    16. Xinzhou Wu & Zhe Cheng & Victor E. Kuzmichev, 2023. "Dynamic Fit Optimization and Effect Evaluation of a Female Wetsuit Based on Virtual Technology," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    17. Zhang, Yanfang & Gao, Qi & Wei, Jinpeng & Shi, Xunpeng & Zhou, Dequn, 2023. "Can China's energy-consumption permit trading scheme achieve the “Porter” effect? Evidence from an estimated DSGE model," Energy Policy, Elsevier, vol. 180(C).
    18. Liu, Lirong & Huang, Guohe & Baetz, Brian & Huang, Charley Z. & Zhang, Kaiqiang, 2019. "Integrated GHG emissions and emission relationships analysis through a disaggregated ecologically-extended input-output model; A case study for Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 97-109.
    19. Marin Pellan & Denise Almeida & Mathilde Louërat & Guillaume Habert, 2024. "Integrating Consumption-Based Metrics into Sectoral Carbon Budgets to Enhance Sustainability Monitoring of Building Activities," Sustainability, MDPI, vol. 16(16), pages 1-25, August.
    20. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924005385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.