IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i12p7374-d839992.html
   My bibliography  Save this article

New Micromobility Means of Transport: An Analysis of E-Scooter Users’ Behaviour in Trondheim

Author

Listed:
  • Margherita Pazzini

    (Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy)

  • Leonardo Cameli

    (Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy)

  • Claudio Lantieri

    (Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy)

  • Valeria Vignali

    (Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy)

  • Giulio Dondi

    (Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy)

  • Thomas Jonsson

    (Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), Høgskoleringen 7A, Gløshaugen, NO-7491 Trondheim, Norway)

Abstract

Negative effects of a massive use of cars, such as congestion, air pollution, noise, and traffic injuries, are affecting the cities everywhere. Recently introduced shared vehicles, such as e-scooters and electric bicycles, could potentially accelerate the transition towards sustainable mobility. Although these vehicles are becoming increasingly common and accepted within regulatory frameworks, some local governments are not yet ready to integrate e-scooters into their transport systems. Indeed, the legislation is unclear as it is not easy to determine whether the e-scooter is more like a bicycle or a vehicle. Moreover, it is difficult to predict the impact of e-scooters on road traffic, as well as the type of road infrastructure chosen by e-scooter drivers or the possible interaction of such vehicles with weak road users, such as pedestrians or cyclists. This study showed an analysis of speed and behaviour of e-scooter drivers in the city of Trondheim (Norway) to investigate how to manage this mode of transport. A total of 204 e-scooters were observed on six different roads in the city centre. The speed of e-scooter drivers was measured by a speed tracker (average value 15.4 km/h) and their behaviour recorded by a hidden observer in the field. Gender, age, distance from pedestrians, speed adaptation to the environment, and type of vehicle used were registered for each e-scooter. Through a Binomial Logit analysis, the data obtained were used to analyse the type of road infrastructure preferred by e-scooter drivers. Results showed that the cycle path is more widely used with percentage value from 60% to 90% of users. In addition, the probability of choice depended mainly on the road environment. The aim of this analysis was to assist local authorities in regulating the safe use of e-scooters and developing appropriate policies for their integration into cities.

Suggested Citation

  • Margherita Pazzini & Leonardo Cameli & Claudio Lantieri & Valeria Vignali & Giulio Dondi & Thomas Jonsson, 2022. "New Micromobility Means of Transport: An Analysis of E-Scooter Users’ Behaviour in Trondheim," IJERPH, MDPI, vol. 19(12), pages 1-17, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:12:p:7374-:d:839992
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/12/7374/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/12/7374/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Hongtai & Huo, Jinghai & Bao, Yongxing & Li, Xuan & Yang, Linchuan & Cherry, Christopher R., 2021. "Impact of e-scooter sharing on bike sharing in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 23-36.
    2. Kager, R. & Bertolini, L. & Te Brömmelstroet, M., 2016. "Characterisation of and reflections on the synergy of bicycles and public transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 208-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed Saleh Alfawzan & Ahmad Aftab, 2022. "Efficiency Assessment of New Signal Timing in Saudi Arabia Implementing Flashing Green Interval Complimented with Law Enforcement Cameras," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    2. Anna Trembecka & Grzegorz Ginda & Anita Kwartnik-Pruc, 2023. "Application of the Decision-Making Trial and Evaluation Laboratory Method to Assess Factors Influencing the Development of Cycling Infrastructure in Cities," Sustainability, MDPI, vol. 15(23), pages 1-27, November.
    3. Shiva Pourfalatoun & Jubaer Ahmed & Erika E. Miller, 2023. "Shared Electric Scooter Users and Non-Users: Perceptions on Safety, Adoption and Risk," Sustainability, MDPI, vol. 15(11), pages 1-15, June.
    4. Margherita Pazzini & Rachele Corticelli & Claudio Lantieri & Cecilia Mazzoli, 2022. "Multi-Criteria Analysis and Decision-Making Approach for the Urban Regeneration: The Application to the Rimini Canal Port (Italy)," Sustainability, MDPI, vol. 15(1), pages 1-28, December.
    5. Hakan İnaç, 2023. "Micro-Mobility Sharing System Accident Case Analysis by Statistical Machine Learning Algorithms," Sustainability, MDPI, vol. 15(3), pages 1-31, January.
    6. Jurgis Zagorskas & Zenonas Turskis, 2024. "Enhancing Sustainable Mobility: Evaluating New Bicycle and Pedestrian Links to Car-Oriented Industrial Parks with ARAS-G MCDM Approach," Sustainability, MDPI, vol. 16(7), pages 1-21, April.
    7. Xingyu Tao & Lan Cheng & Ruihan Zhang & W. K. Chan & Huang Chao & Jing Qin, 2023. "Towards Green Innovation in Smart Cities: Leveraging Traffic Flow Prediction with Machine Learning Algorithms for Sustainable Transportation Systems," Sustainability, MDPI, vol. 16(1), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo della Mura & Serena Failla & Nicolò Gori & Alfonso Micucci & Filippo Paganelli, 2022. "E-Scooter Presence in Urban Areas: Are Consistent Rules, Paying Attention and Smooth Infrastructure Enough for Safety?," Sustainability, MDPI, vol. 14(21), pages 1-36, November.
    2. Jin, Scarlett T. & Sui, Daniel Z., 2024. "A comparative analysis of the spatial determinants of e-bike and e-scooter sharing link flows," Journal of Transport Geography, Elsevier, vol. 119(C).
    3. Wiersma, J.K., 2020. "Commuting patterns and car dependency in urban regions," Journal of Transport Geography, Elsevier, vol. 84(C).
    4. Krauss, Konstantin & Gnann, Till & Burgert, Tobias & Axhausen, Kay W., 2024. "Faster, greener, scooter? An assessment of shared e-scooter usage based on real-world driving data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    5. Ghasri, Milad & Ardeshiri, Ali & Zhang, Xiang & Waller, S. Travis, 2024. "Analysing preferences for integrated micromobility and public transport systems: A hierarchical latent class approach considering taste heterogeneity and attribute non-attendance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    6. Samadzad, Mahdi & Nosratzadeh, Hossein & Karami, Hossein & Karami, Ali, 2023. "What are the factors affecting the adoption and use of electric scooter sharing systems from the end user's perspective?," Transport Policy, Elsevier, vol. 136(C), pages 70-82.
    7. Jarosław Gabryelski & Przemysław Kurczewski & Maciej Sydor & Agnieszka Szperling & Dariusz Torzyński & Marek Zabłocki, 2021. "Development of Transport for Disabled People on the Example of Wheelchair Propulsion with Cam-Thread Drive," Energies, MDPI, vol. 14(23), pages 1-13, December.
    8. Yang, Hongtai & Zheng, Rong & Li, Xuan & Huo, Jinghai & Yang, Linchuan & Zhu, Tong, 2022. "Nonlinear and threshold effects of the built environment on e-scooter sharing ridership," Journal of Transport Geography, Elsevier, vol. 104(C).
    9. Oostendorp, Rebekka & Gebhardt, Laura, 2018. "Combining means of transport as a users' strategy to optimize traveling in an urban context: empirical results on intermodal travel behavior from a survey in Berlin," Journal of Transport Geography, Elsevier, vol. 71(C), pages 72-83.
    10. Demetrio Carmine Festa & Carmen Forciniti, 2019. "Attitude towards Bike Use in Rende, a Small Town in South Italy," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    11. Klinger, Thomas, 2017. "Moving from monomodality to multimodality? Changes in mode choice of new residents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 221-237.
    12. Yang, Hongtai & Luo, Peng & Li, Chaojing & Zhai, Guocong & Yeh, Anthony G.O., 2023. "Nonlinear effects of fare discounts and built environment on ridesplitting adoption rates," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    13. Ho, Chinh Q. & Tirachini, Alejandro, 2024. "Mobility-as-a-Service and the role of multimodality in the sustainability of urban mobility in developing and developed countries," Transport Policy, Elsevier, vol. 145(C), pages 161-176.
    14. Shelat, Sanmay & Huisman, Raymond & van Oort, Niels, 2018. "Analysing the trip and user characteristics of the combined bicycle and transit mode," Research in Transportation Economics, Elsevier, vol. 69(C), pages 68-76.
    15. Samuel Nello-Deakin & Marco te Brömmelstroet, 2021. "Scaling up cycling or replacing driving? Triggers and trajectories of bike–train uptake in the Randstad area," Transportation, Springer, vol. 48(6), pages 3239-3267, December.
    16. Nigro, Marialisa & Castiglione, Marisdea & Maria Colasanti, Fabio & De Vincentis, Rosita & Valenti, Gaetano & Liberto, Carlo & Comi, Antonio, 2022. "Exploiting floating car data to derive the shifting potential to electric micromobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 78-93.
    17. Le Trong Hieu & Ock Taeck Lim, 2023. "Effects of the Structure and Operating Parameters on the Performance of an Electric Scooter," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    18. Pritchard, John P. & Tomasiello, Diego Bogado & Giannotti, Mariana & Geurs, Karst, 2019. "Potential impacts of bike-and-ride on job accessibility and spatial equity in São Paulo, Brazil," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 386-400.
    19. Seungkyu Ryu, 2020. "A Bicycle Origin–Destination Matrix Estimation Based on a Two-Stage Procedure," Sustainability, MDPI, vol. 12(7), pages 1-14, April.
    20. Greg Rybarczyk & Richard R. Shaker, 2021. "Predicting Bicycle-on-Board Transit Choice in a University Environment," Sustainability, MDPI, vol. 13(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:12:p:7374-:d:839992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.