IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7671-d1141248.html
   My bibliography  Save this article

Assessment of a Diffuser-Augmented Hydrokinetic Turbine Designed for Harnessing the Flow Energy Downstream of Dams

Author

Listed:
  • Jerson R. P. Vaz

    (Graduate Program in Natural Resources Engineering, Institute of Technology, Federal University of Pará, Belém 66075-110, PA, Brazil
    These authors contributed equally to this work.)

  • Adry K. F. de Lima

    (Graduate Program in Natural Resources Engineering, Institute of Technology, Federal University of Pará, Belém 66075-110, PA, Brazil
    These authors contributed equally to this work.)

  • Erb F. Lins

    (Academic Unit of Cabo de Santo Agostinho, Federal Rural University of Pernambuco, Cabo de Santo Agostinho 54518-430, PE, Brazil)

Abstract

Harnessing the remaining energy downstream of dams has recently gained significant attention as the kinetic energy available in the water current is considerable. This work developed a novel study to quantify the energy gain downstream of dams using a horizontal-axis hydrokinetic turbine with a diffuser. The present assessment uses field data from the Tucuruí Dam, where a stream velocity of 2.35 m/s is the velocity at which the highest energy extraction can occur. In this case, a 3-bladed hydrokinetic turbine with a 10 m diameter, shrouded by a flanged conical diffuser, was simulated. Numerical modeling using computational fluid dynamics was carried out using the Reynolds averaged Navier–Stokes formulation with the κ – ω shear stress transport as the turbulence model. The results yield good agreement with experimental and theoretical data available in the literature. Moreover, the turbine power coefficient under the diffuser effect could increase by about 55% for a tip speed ratio of 5.4, and the power output increased by about 1.5 times when compared to the same turbine without a diffuser. Additionally, as there are no hydrokinetic turbines installed downstream of dams in the Amazon region, the present study is relevant as it explores the use of hydrokinetic turbines as an alternative for harnessing the turbined and verted flow from dams. This alternative may help avoid further environmental impacts caused by the need for structural extensions.

Suggested Citation

  • Jerson R. P. Vaz & Adry K. F. de Lima & Erb F. Lins, 2023. "Assessment of a Diffuser-Augmented Hydrokinetic Turbine Designed for Harnessing the Flow Energy Downstream of Dams," Sustainability, MDPI, vol. 15(9), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7671-:d:1141248
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7671/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7671/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bontempo, R. & Manna, M., 2016. "Effects of the duct thrust on the performance of ducted wind turbines," Energy, Elsevier, vol. 99(C), pages 274-287.
    2. Silva, Paulo Augusto Strobel Freitas & Shinomiya, Léo Daiki & de Oliveira, Taygoara Felamingo & Vaz, Jerson Rogério Pinheiro & Amarante Mesquita, André Luiz & Brasil Junior, Antonio Cesar Pinho, 2017. "Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM," Applied Energy, Elsevier, vol. 185(P2), pages 1281-1291.
    3. Laws, Nicholas D. & Epps, Brenden P., 2016. "Hydrokinetic energy conversion: Technology, research, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1245-1259.
    4. Vaz, Jerson R.P. & Okulov, Valery L. & Wood, David H., 2021. "Finite blade functions and blade element optimization for diffuser-augmented wind turbines," Renewable Energy, Elsevier, vol. 165(P1), pages 812-822.
    5. Tavares Dias do Rio Vaz, Déborah Aline & Vaz, Jerson Rogério Pinheiro & Mesquita, André Luiz Amarante & Pinho, João Tavares & Pinho Brasil Junior, Antonio Cesar, 2013. "Optimum aerodynamic design for wind turbine blade with a Rankine vortex wake," Renewable Energy, Elsevier, vol. 55(C), pages 296-304.
    6. Holanda, Patrícia da Silva & Blanco, Claudio José Cavalcante & Mesquita, André Luiz Amarante & Brasil Junior, Antônio César Pinho & de Figueiredo, Nelio Moura & Macêdo, Emanuel Negrão & Secretan, Yves, 2017. "Assessment of hydrokinetic energy resources downstream of hydropower plants," Renewable Energy, Elsevier, vol. 101(C), pages 1203-1214.
    7. Vaz, Jerson R.P. & Wood, David H., 2018. "Effect of the diffuser efficiency on wind turbine performance," Renewable Energy, Elsevier, vol. 126(C), pages 969-977.
    8. Miriam L. A. Gemaque & Jerson R. P. Vaz & Osvaldo R. Saavedra, 2022. "Optimization of Hydrokinetic Swept Blades," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    9. Hamilton Pessoa Picanço & Adry Kleber Ferreira de Lima & Déborah Aline Tavares Dias do Rio Vaz & Erb Ferreira Lins & Jerson Rogério Pinheiro Vaz, 2022. "Cavitation Inception on Hydrokinetic Turbine Blades Shrouded by Diffuser," Sustainability, MDPI, vol. 14(12), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miriam L. A. Gemaque & Jerson R. P. Vaz & Osvaldo R. Saavedra, 2022. "Optimization of Hydrokinetic Swept Blades," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    2. Dogru, Safak & Yilmaz, Oktay, 2024. "Extensive design and aerodynamic performance investigation of diffuser augmented wind turbine (DAWT) guided by generalized actuator disc theory," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Keramat Siavash, Nemat & Najafi, G. & Tavakkoli Hashjin, Teymour & Ghobadian, Barat & Mahmoodi, Esmail, 2020. "Mathematical modeling of a horizontal axis shrouded wind turbine," Renewable Energy, Elsevier, vol. 146(C), pages 856-866.
    4. Chong, Wen-Tong & Muzammil, Wan Khairul & Ong, Hwai-Chyuan & Sopian, Kamaruzzaman & Gwani, Mohammed & Fazlizan, Ahmad & Poh, Sin-Chew, 2019. "Performance analysis of the deflector integrated cross axis wind turbine," Renewable Energy, Elsevier, vol. 138(C), pages 675-690.
    5. Mohammadi, S. & Hassanalian, M. & Arionfard, H. & Bakhtiyarov, S., 2020. "Optimal design of hydrokinetic turbine for low-speed water flow in Golden Gate Strait," Renewable Energy, Elsevier, vol. 150(C), pages 147-155.
    6. Bontempo, R. & Manna, M., 2020. "Diffuser augmented wind turbines: Review and assessment of theoretical models," Applied Energy, Elsevier, vol. 280(C).
    7. Fontaine, A.A. & Straka, W.A. & Meyer, R.S. & Jonson, M.L. & Young, S.D. & Neary, V.S., 2020. "Performance and wake flow characterization of a 1:8.7-scale reference USDOE MHKF1 hydrokinetic turbine to establish a verification and validation test database," Renewable Energy, Elsevier, vol. 159(C), pages 451-467.
    8. Santos, Ivan Felipe Silva dos & Camacho, Ramiro Gustavo Ramirez & Tiago Filho, Geraldo Lúcio & Botan, Antonio Carlos Barkett & Vinent, Barbara Amoeiro, 2019. "Energy potential and economic analysis of hydrokinetic turbines implementation in rivers: An approach using numerical predictions (CFD) and experimental data," Renewable Energy, Elsevier, vol. 143(C), pages 648-662.
    9. Shahzad Ali, Qazi & Kim, Man-Hoe, 2022. "Quantifying impacts of shell augmentation on power output of airborne wind energy system at elevated heights," Energy, Elsevier, vol. 239(PA).
    10. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    11. Moreau, Martin & Germain, Grégory & Maurice, Guillaume, 2023. "Experimental performance and wake study of a ducted twin vertical axis turbine in ebb and flood tide currents at a 1/20th scale," Renewable Energy, Elsevier, vol. 214(C), pages 318-333.
    12. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    13. Mahmud, M. A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2019. "A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe," Applied Energy, Elsevier, vol. 250(C), pages 198-214.
    14. Brown, Eloise J. & King, Amanda L. & Duvoy, Paul X. & Trochim, Erin & Kasper, Jeremy L. & Wilson, Melany L. & Ravens, Thomas M., 2023. "Site suitability analysis of hydrokinetic river energy resources at community microgrids on the Kuskokwim River, Alaska," Renewable Energy, Elsevier, vol. 217(C).
    15. Quaranta, Emanuele & Muntean, Sebastian, 2023. "Wasted and excess energy in the hydropower sector: A European assessment of tailrace hydrokinetic potential, degassing-methane capture and waste-heat recovery," Applied Energy, Elsevier, vol. 329(C).
    16. Ye, Jianjun & Cheng, Yanglin & Xie, Junlong & Huang, Xiaohong & Zhang, Yuan & Hu, Siyao & Salem, Shehab & Wu, Jiejun, 2020. "Effects of divergent angle on the flow behaviors in low speed wind accelerating ducts," Renewable Energy, Elsevier, vol. 152(C), pages 1292-1301.
    17. Mansoor Ahmed Zaib & Arbaz Waqar & Shoukat Abbas & Saeed Badshah & Sajjad Ahmad & Muhammad Amjad & Seyed Saeid Rahimian Koloor & Mohamed Eldessouki, 2022. "Effect of Blade Diameter on the Performance of Horizontal-Axis Ocean Current Turbine," Energies, MDPI, vol. 15(15), pages 1-13, July.
    18. Okulov, V.L. & Naumov, I.V. & Kabardin, I.K. & Litvinov, I.V. & Markovich, D.M. & Mikkelsen, R.F. & Sørensen, J.N. & Alekseenko, S.V. & Wood, D.H., 2021. "Experiments on line arrays of horizontal-axis hydroturbines," Renewable Energy, Elsevier, vol. 163(C), pages 15-21.
    19. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    20. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7671-:d:1141248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.