IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v150y2020icp147-155.html
   My bibliography  Save this article

Optimal design of hydrokinetic turbine for low-speed water flow in Golden Gate Strait

Author

Listed:
  • Mohammadi, S.
  • Hassanalian, M.
  • Arionfard, H.
  • Bakhtiyarov, S.

Abstract

Marine current power has been utilized in recent years as one of the most foreseeable renewable energy sources. In this study, the optimal design of hydrofoil is carried out for hydrokinetic turbines to improve their hydrodynamic performance in Golden Gate Strait with the low-speed current. In order to design optimal hydrofoils for different sections of a blade, Particle Swarm Optimization (PSO) and XFoil are coupled. For hydrofoil’s shape parameterization, the B-spline curve is used. The coordinate’s values of the control points are designated to act as optimization parameters. Five hydrofoils from root to tip are designed for a turbine at low current speed with three blades. Hydrofoils are optimized from hub to tip in distances 0.4, 1.2, 2.4, 3.4, and 4.4 m. Optimum chord length and twist angle distribution along the blade are obtained using Harp_Opt, which is based on Blade Element Momentum theory. Finally, the power coefficient, rotational speed, cavitation criteria, and power are calculated for an optimized turbine and compared to the first turbine and Betz criterion. It is assured that cavitation will not occur at the tip of the blade which the linear velocity is maximum. The summation of cavitation number and minimum pressure coefficient (σ+CpMin) is estimated to be 1.8. The power coefficient is computed using Harp_opt for both initial turbines with hydrofoil NACA 4415 and turbine with optimized cross sections from hub to tip. The power coefficient is improved 26% for speeds of 0.5–2 m/s and 50% for speeds of 2–3 m/s. An optimal marine current turbine which is useable for relatively lower currents is designed in this study by applying and combining different tools for different stages of research.

Suggested Citation

  • Mohammadi, S. & Hassanalian, M. & Arionfard, H. & Bakhtiyarov, S., 2020. "Optimal design of hydrokinetic turbine for low-speed water flow in Golden Gate Strait," Renewable Energy, Elsevier, vol. 150(C), pages 147-155.
  • Handle: RePEc:eee:renene:v:150:y:2020:i:c:p:147-155
    DOI: 10.1016/j.renene.2019.12.142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811932021X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.12.142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahaj, A.S & Myers, L.E, 2003. "Fundamentals applicable to the utilisation of marine current turbines for energy production," Renewable Energy, Elsevier, vol. 28(14), pages 2205-2211.
    2. Silva, Paulo Augusto Strobel Freitas & Shinomiya, Léo Daiki & de Oliveira, Taygoara Felamingo & Vaz, Jerson Rogério Pinheiro & Amarante Mesquita, André Luiz & Brasil Junior, Antonio Cesar Pinho, 2017. "Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM," Applied Energy, Elsevier, vol. 185(P2), pages 1281-1291.
    3. Rahimian, Masoud & Walker, Jessica & Penesis, Irene, 2018. "Performance of a horizontal axis marine current turbine– A comprehensive evaluation using experimental, numerical, and theoretical approaches," Energy, Elsevier, vol. 148(C), pages 965-976.
    4. Nunes, Matheus M. & Mendes, Rafael C.F. & Oliveira, Taygoara F. & Brasil Junior, Antonio C.P., 2019. "An experimental study on the diffuser-enhanced propeller hydrokinetic turbines," Renewable Energy, Elsevier, vol. 133(C), pages 840-848.
    5. Laws, Nicholas D. & Epps, Brenden P., 2016. "Hydrokinetic energy conversion: Technology, research, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1245-1259.
    6. Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
    7. Batten, W.M.J. & Bahaj, A.S. & Molland, A.F. & Chaplin, J.R., 2006. "Hydrodynamics of marine current turbines," Renewable Energy, Elsevier, vol. 31(2), pages 249-256.
    8. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2013. "Design of a horizontal axis tidal current turbine," Applied Energy, Elsevier, vol. 111(C), pages 161-174.
    9. Lande-Sudall, D. & Stallard, T. & Stansby, P., 2019. "Co-located deployment of offshore wind turbines with tidal stream turbine arrays for improved cost of electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 492-503.
    10. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    11. Dincer, Ibrahim, 2000. "Renewable energy and sustainable development: a crucial review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 157-175, June.
    12. Draycott, S. & Nambiar, A. & Sellar, B. & Davey, T. & Venugopal, V., 2019. "Assessing extreme loads on a tidal turbine using focused wave groups in energetic currents," Renewable Energy, Elsevier, vol. 135(C), pages 1013-1024.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Gharib-Yosry & Eduardo Blanco-Marigorta & Aitor Fernández-Jiménez & Rodolfo Espina-Valdés & Eduardo Álvarez-Álvarez, 2021. "Wind–Water Experimental Analysis of Small SC-Darrieus Turbine: An Approach for Energy Production in Urban Systems," Sustainability, MDPI, vol. 13(9), pages 1-15, May.
    2. Hongwei Liu & Yajing Gu & Yong-Gang Lin & Yang-Jian Li & Wei Li & Hongbin Zhou, 2020. "Improved Blade Design for Tidal Current Turbines," Energies, MDPI, vol. 13(10), pages 1-16, May.
    3. Puertas-Frías, Carmen M. & Willson, Clinton S. & García-Salaberri, Pablo A., 2022. "Design and economic analysis of a hydrokinetic turbine for household applications," Renewable Energy, Elsevier, vol. 199(C), pages 587-598.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2014. "Marine current energy resource assessment and design of a marine current turbine for Fiji," Renewable Energy, Elsevier, vol. 65(C), pages 14-22.
    2. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    3. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    4. Ramin Alipour & Roozbeh Alipour & Seyed Saeid Rahimian Koloor & Michal Petrů & Seyed Alireza Ghazanfari, 2020. "On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    5. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    6. Abdulaziz Abutunis & Venkata Gireesh Menta, 2022. "Comprehensive Parametric Study of Blockage Effect on the Performance of Horizontal Axis Hydrokinetic Turbines," Energies, MDPI, vol. 15(7), pages 1-22, April.
    7. Wang, Wen-Quan & Yin, Rui & Yan, Yan, 2019. "Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine," Renewable Energy, Elsevier, vol. 133(C), pages 91-102.
    8. Fontaine, A.A. & Straka, W.A. & Meyer, R.S. & Jonson, M.L. & Young, S.D. & Neary, V.S., 2020. "Performance and wake flow characterization of a 1:8.7-scale reference USDOE MHKF1 hydrokinetic turbine to establish a verification and validation test database," Renewable Energy, Elsevier, vol. 159(C), pages 451-467.
    9. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    10. Li, Wei & Zhou, Hongbin & Liu, Hongwei & Lin, Yonggang & Xu, Quankun, 2016. "Review on the blade design technologies of tidal current turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 414-422.
    11. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
    12. Sun, ZhaoCheng & Li, Dong & Mao, YuFeng & Feng, Long & Zhang, Yue & Liu, Chao, 2022. "Anti-cavitation optimal design and experimental research on tidal turbines based on improved inverse BEM," Energy, Elsevier, vol. 239(PD).
    13. Abutunis, A. & Taylor, G. & Fal, M. & Chandrashekhara, K., 2020. "Experimental evaluation of coaxial horizontal axis hydrokinetic composite turbine system," Renewable Energy, Elsevier, vol. 157(C), pages 232-245.
    14. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    15. Moreau, Martin & Germain, Grégory & Maurice, Guillaume, 2023. "Experimental performance and wake study of a ducted twin vertical axis turbine in ebb and flood tide currents at a 1/20th scale," Renewable Energy, Elsevier, vol. 214(C), pages 318-333.
    16. Karunakaran Venkatesan & Uma Govindarajan & Padmanathan Kasinathan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen & Zbigniew Leonowicz, 2019. "Economic Analysis of HRES Systems with Energy Storage During Grid Interruptions and Curtailment in Tamil Nadu, India: A Hybrid RBFNOEHO Technique," Energies, MDPI, vol. 12(16), pages 1-26, August.
    17. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.
    18. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    19. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    20. Akhyani, Mahmood & Chegini, Vahid & Aliakbari Bidokhti, Abbasali, 2015. "An appraisal of the power density of current profile in the Persian Gulf and the Gulf of Oman using numerical simulation," Renewable Energy, Elsevier, vol. 74(C), pages 307-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:150:y:2020:i:c:p:147-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.