IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v280y2020ics0306261920313386.html
   My bibliography  Save this article

Diffuser augmented wind turbines: Review and assessment of theoretical models

Author

Listed:
  • Bontempo, R.
  • Manna, M.

Abstract

Due to their potential to beat the Betz–Joukowsky limit for power extraction, diffuser-augmented wind-turbines have experienced a great research interest, especially in the last two decades. This paper presents a thorough critical-analysis and review of the most important theoretical models conceived for the performance analysis and design of this wind-concentrator system. The models are classified and compared between each other, and their main analogies and differences are highlighted and explained. New bridging relations between several models are also laid down. All methods are verified and validated using new and/or existing numerical and experimental data. For the first time, the impact of the simplifying assumptions, typically used in these models, is evaluated and discussed on a quantitative basis. Attention is also paid to the optimization procedures aimed at evaluating the maximum power-coefficient attainable by a diffuser-augmented wind-turbine. It is revealed that none of these procedures is valid for a given duct geometry, whereas they still offer some usefulness from a design point of view. Finally, the review points out the main limitations, shortcomings and open-issues associated with theoretical models, paving the way for future research lines and improvements of this kind of models.

Suggested Citation

  • Bontempo, R. & Manna, M., 2020. "Diffuser augmented wind turbines: Review and assessment of theoretical models," Applied Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920313386
    DOI: 10.1016/j.apenergy.2020.115867
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920313386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115867?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sorribes-Palmer, F. & Sanz-Andres, A. & Ayuso, L. & Sant, R. & Franchini, S., 2017. "Mixed CFD-1D wind turbine diffuser design optimization," Renewable Energy, Elsevier, vol. 105(C), pages 386-399.
    2. Han, Wanlong & Yan, Peigang & Han, Wanjin & He, Yurong, 2015. "Design of wind turbines with shroud and lobed ejectors for efficient utilization of low-grade wind energy," Energy, Elsevier, vol. 89(C), pages 687-701.
    3. Keramat Siavash, Nemat & Najafi, G. & Tavakkoli Hashjin, Teymour & Ghobadian, Barat & Mahmoodi, Esmail, 2020. "Mathematical modeling of a horizontal axis shrouded wind turbine," Renewable Energy, Elsevier, vol. 146(C), pages 856-866.
    4. Bontempo, R. & Manna, M., 2016. "Effects of the duct thrust on the performance of ducted wind turbines," Energy, Elsevier, vol. 99(C), pages 274-287.
    5. Kosasih, B. & Saleh Hudin, H., 2016. "Influence of inflow turbulence intensity on the performance of bare and diffuser-augmented micro wind turbine model," Renewable Energy, Elsevier, vol. 87(P1), pages 154-167.
    6. Mauro, S. & Brusca, S. & Lanzafame, R. & Messina, M., 2019. "CFD modeling of a ducted Savonius wind turbine for the evaluation of the blockage effects on rotor performance," Renewable Energy, Elsevier, vol. 141(C), pages 28-39.
    7. Kumar, Vedant & Saha, Sandeep, 2019. "Theoretical performance estimation of shrouded-twin-rotor wind turbines using the actuator disk theory," Renewable Energy, Elsevier, vol. 134(C), pages 961-969.
    8. Igra, Ozer, 1977. "The shrouded aerogenerator," Energy, Elsevier, vol. 2(4), pages 429-439.
    9. Keramat Siavash, Nemat & Najafi, G. & Tavakkoli Hashjin, Teymour & Ghobadian, Barat & Mahmoodi, Esmail, 2020. "An innovative variable shroud for micro wind turbines," Renewable Energy, Elsevier, vol. 145(C), pages 1061-1072.
    10. Lipian, Michal & Dobrev, Ivan & Massouh, Fawaz & Jozwik, Krzysztof, 2020. "Small wind turbine augmentation: Numerical investigations of shrouded- and twin-rotor wind turbines," Energy, Elsevier, vol. 201(C).
    11. Avallone, Francesco & Ragni, Daniele & Casalino, Damiano, 2020. "On the effect of the tip-clearance ratio on the aeroacoustics of a diffuser-augmented wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 1317-1327.
    12. Ahmadi Asl, Hamid & Kamali Monfared, Reza & Rad, Manouchehr, 2017. "Experimental investigation of blade number and design effects for a ducted wind turbine," Renewable Energy, Elsevier, vol. 105(C), pages 334-343.
    13. Wang, Wen-Xue & Matsubara, Terutake & Hu, Junfeng & Odahara, Satoru & Nagai, Tomoyuki & Karasutani, Takashi & Ohya, Yuji, 2015. "Experimental investigation into the influence of the flanged diffuser on the dynamic behavior of CFRP blade of a shrouded wind turbine," Renewable Energy, Elsevier, vol. 78(C), pages 386-397.
    14. Grassmann, H. & Bet, F. & Cabras, G. & Ceschia, M. & Cobai, D. & DelPapa, C., 2003. "A partially static turbine—first experimental results," Renewable Energy, Elsevier, vol. 28(11), pages 1779-1785.
    15. Lipian, Michal & Dobrev, Ivan & Karczewski, Maciej & Massouh, Fawaz & Jozwik, Krzysztof, 2019. "Small wind turbine augmentation: Experimental investigations of shrouded- and twin-rotor wind turbine systems," Energy, Elsevier, vol. 186(C).
    16. Toja-Silva, Francisco & Colmenar-Santos, Antonio & Castro-Gil, Manuel, 2013. "Urban wind energy exploitation systems: Behaviour under multidirectional flow conditions—Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 364-378.
    17. Vaz, Jerson R.P. & Wood, David H., 2018. "Effect of the diffuser efficiency on wind turbine performance," Renewable Energy, Elsevier, vol. 126(C), pages 969-977.
    18. Saleem, Arslan & Kim, Man-Hoe, 2019. "Performance of buoyant shell horizontal axis wind turbine under fluctuating yaw angles," Energy, Elsevier, vol. 169(C), pages 79-91.
    19. Tariq Abdulsalam Khamlaj & Markus Peer Rumpfkeil, 2017. "Theoretical Analysis of Shrouded Horizontal Axis Wind Turbines," Energies, MDPI, vol. 10(1), pages 1-19, January.
    20. Castellani, Francesco & Vignaroli, Andrea, 2013. "An application of the actuator disc model for wind turbine wakes calculations," Applied Energy, Elsevier, vol. 101(C), pages 432-440.
    21. Aranake, Aniket C. & Lakshminarayan, Vinod K. & Duraisamy, Karthik, 2015. "Computational analysis of shrouded wind turbine configurations using a 3-dimensional RANS solver," Renewable Energy, Elsevier, vol. 75(C), pages 818-832.
    22. Liu, Yingyi & Yoshida, Shigeo, 2015. "An extension of the Generalized Actuator Disc Theory for aerodynamic analysis of the diffuser-augmented wind turbines," Energy, Elsevier, vol. 93(P2), pages 1852-1859.
    23. Bontempo, R. & Manna, M., 2014. "Performance analysis of open and ducted wind turbines," Applied Energy, Elsevier, vol. 136(C), pages 405-416.
    24. Al-Sulaiman, Fahad A., 2017. "Exergoeconomic analysis of ejector-augmented shrouded wind turbines," Energy, Elsevier, vol. 128(C), pages 264-270.
    25. Søren Hjort & Helgi Larsen, 2014. "A Multi-Element Diffuser Augmented Wind Turbine," Energies, MDPI, vol. 7(5), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nardecchia, Fabio & Groppi, Daniele & Astiaso Garcia, Davide & Bisegna, Fabio & de Santoli, Livio, 2021. "A new concept for a mini ducted wind turbine system," Renewable Energy, Elsevier, vol. 175(C), pages 610-624.
    2. Hesami, Ali & Nikseresht, Amir H., 2023. "Towards development and optimization of the Savonius wind turbine incorporated with a wind-lens," Energy, Elsevier, vol. 274(C).
    3. Mohammad Hassan Ranjbar & Behnam Rafiei & Seyyed Abolfazl Nasrazadani & Kobra Gharali & Madjid Soltani & Armughan Al-Haq & Jatin Nathwani, 2021. "Power Enhancement of a Vertical Axis Wind Turbine Equipped with an Improved Duct," Energies, MDPI, vol. 14(18), pages 1-16, September.
    4. Dogru, Safak & Yilmaz, Oktay, 2024. "Extensive design and aerodynamic performance investigation of diffuser augmented wind turbine (DAWT) guided by generalized actuator disc theory," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    5. Shaikh Zishan & Altaf Hossain Molla & Haroon Rashid & Kok Hoe Wong & Ahmad Fazlizan & Molla Shahadat Hossain Lipu & Mohd Tariq & Omar Mutab Alsalami & Mahidur R. Sarker, 2023. "Comprehensive Analysis of Kinetic Energy Recovery Systems for Efficient Energy Harnessing from Unnaturally Generated Wind Sources," Sustainability, MDPI, vol. 15(21), pages 1-18, October.
    6. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Majidi, Sahand & Mojaddam, Mohammad, 2023. "Experimental study of the effect of the duct on dual co-axial horizontal axis wind turbines and the effect of rotors diameter ratio and distance on increasing power coefficient," Energy, Elsevier, vol. 284(C).
    7. Koichi Watanabe & Yuji Ohya, 2021. "A Simple Theory and Performance Prediction for a Shrouded Wind Turbine with a Brimmed Diffuser," Energies, MDPI, vol. 14(12), pages 1-15, June.
    8. Paweł Ligęza, 2021. "Basic, Advanced, and Sophisticated Approaches to the Current and Forecast Challenges of Wind Energy," Energies, MDPI, vol. 14(23), pages 1-10, December.
    9. Shigeo Yoshida & Masataka Motoyama & Peter Jamieson & Koij Matsuoka, 2021. "Diffuser Total Efficiency Using Generalized Actuator Disc Model and Its Maximization Method," Energies, MDPI, vol. 14(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Mojaddam, Mohammad & Majidi, Sahand, 2022. "Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine," Energy, Elsevier, vol. 245(C).
    3. Keramat Siavash, Nemat & Najafi, G. & Tavakkoli Hashjin, Teymour & Ghobadian, Barat & Mahmoodi, Esmail, 2020. "Mathematical modeling of a horizontal axis shrouded wind turbine," Renewable Energy, Elsevier, vol. 146(C), pages 856-866.
    4. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Leloudas, Stavros N. & Lygidakis, Georgios N. & Eskantar, Alexandros I. & Nikolos, Ioannis K., 2020. "A robust methodology for the design optimization of diffuser augmented wind turbine shrouds," Renewable Energy, Elsevier, vol. 150(C), pages 722-742.
    6. Shahzad Ali, Qazi & Kim, Man-Hoe, 2022. "Quantifying impacts of shell augmentation on power output of airborne wind energy system at elevated heights," Energy, Elsevier, vol. 239(PA).
    7. Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).
    8. Vaz, Jerson R.P. & Wood, David H., 2018. "Effect of the diffuser efficiency on wind turbine performance," Renewable Energy, Elsevier, vol. 126(C), pages 969-977.
    9. Dogru, Safak & Yilmaz, Oktay, 2024. "Extensive design and aerodynamic performance investigation of diffuser augmented wind turbine (DAWT) guided by generalized actuator disc theory," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Majidi, Sahand & Mojaddam, Mohammad, 2023. "Experimental study of the effect of the duct on dual co-axial horizontal axis wind turbines and the effect of rotors diameter ratio and distance on increasing power coefficient," Energy, Elsevier, vol. 284(C).
    11. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    12. Vaz, Jerson R.P. & Okulov, Valery L. & Wood, David H., 2021. "Finite blade functions and blade element optimization for diffuser-augmented wind turbines," Renewable Energy, Elsevier, vol. 165(P1), pages 812-822.
    13. Sridhar, Surya & Zuber, Mohammad & B., Satish Shenoy & Kumar, Amit & Ng, Eddie Y.K. & Radhakrishnan, Jayakrishnan, 2022. "Aerodynamic comparison of slotted and non-slotted diffuser casings for Diffuser Augmented Wind Turbines (DAWT)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Rivarolo, M. & Freda, A. & Traverso, A., 2020. "Test campaign and application of a small-scale ducted wind turbine with analysis of yaw angle influence," Applied Energy, Elsevier, vol. 279(C).
    15. Mohammad Hassan Ranjbar & Behnam Rafiei & Seyyed Abolfazl Nasrazadani & Kobra Gharali & Madjid Soltani & Armughan Al-Haq & Jatin Nathwani, 2021. "Power Enhancement of a Vertical Axis Wind Turbine Equipped with an Improved Duct," Energies, MDPI, vol. 14(18), pages 1-16, September.
    16. Anbarsooz, M. & Amiri, M., 2022. "Towards enhancing the wind energy potential at the built environment: Geometry effects of two adjacent buildings," Energy, Elsevier, vol. 239(PD).
    17. Saleem, Arslan & Kim, Man-Hoe, 2019. "Performance of buoyant shell horizontal axis wind turbine under fluctuating yaw angles," Energy, Elsevier, vol. 169(C), pages 79-91.
    18. Kumar, Vedant & Saha, Sandeep, 2019. "Theoretical performance estimation of shrouded-twin-rotor wind turbines using the actuator disk theory," Renewable Energy, Elsevier, vol. 134(C), pages 961-969.
    19. Silva, Paulo A.S.F. & Tsoutsanis, Panagiotis & Vaz, Jerson R.P. & Macias, Marianela M., 2024. "A comprehensive CFD investigation of tip vortex trajectory in shrouded wind turbines using compressible RANS solver," Energy, Elsevier, vol. 294(C).
    20. Borg, Mitchell G. & Xiao, Qing & Allsop, Steven & Incecik, Atilla & Peyrard, Christophe, 2022. "A numerical performance analysis of a ducted, high-solidity tidal turbine in yawed flow conditions," Renewable Energy, Elsevier, vol. 193(C), pages 179-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920313386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.