IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3191-d1063260.html
   My bibliography  Save this article

Wind Power Converter Fault Diagnosis Using Reduced Kernel PCA-Based BiLSTM

Author

Listed:
  • Khadija Attouri

    (Research Unit Advanced Materials and Nanotechnologies (UR16ES03), Higher Institute of Applied Sciences and Technology of Kasserine, Kairouan University, Kasserine 1200, Tunisia)

  • Majdi Mansouri

    (Electrical and Computer Engineering Program, Texas A&M University at Qatar, Doha P.O. Box 23874, Qatar)

  • Mansour Hajji

    (Research Unit Advanced Materials and Nanotechnologies (UR16ES03), Higher Institute of Applied Sciences and Technology of Kasserine, Kairouan University, Kasserine 1200, Tunisia)

  • Abdelmalek Kouadri

    (Signals and Systems Laboratory, Institute of Electrical and Electronic Engineering, University M’Hamed Bougara of Boumerdes, Avevue of Independence, Boumerdes 35000, Algeria)

  • Kais Bouzrara

    (Laboratory of Automatic Signal and Image Processing, National Engineering School of Monastir, Monastir 5035, Tunisia)

  • Hazem Nounou

    (Electrical and Computer Engineering Program, Texas A&M University at Qatar, Doha P.O. Box 23874, Qatar)

Abstract

In this paper, we present a novel and effective fault detection and diagnosis (FDD) method for a wind energy converter (WEC) system with a nominal power of 15 KW, which is designed to significantly reduce the complexity and computation time and possibly increase the accuracy of fault diagnosis. This strategy involves three significant steps: first, a size reduction procedure is applied to the training dataset, which uses hierarchical K-means clustering and Euclidean distance schemes; second, both significantly reduced training datasets are utilized by the KPCA technique to extract and select the most sensitive and significant features; and finally, in order to distinguish between the diverse WEC system operating modes, the selected features are used to train a bidirectional long-short-term memory classifier (BiLSTM). In this study, various fault scenarios (short-circuit (SC) faults and open-circuit (OC) faults) were injected, and each scenario comprised different cases (simple, multiple, and mixed faults) on different sides and locations (generator-side converter and grid-side converter) to ensure a comprehensive and global evaluation. The obtained results show that the proposed strategy for FDD via both applied dataset size reduction methods not only improves the accuracy but also provides an efficient reduction in computation time and storage space.

Suggested Citation

  • Khadija Attouri & Majdi Mansouri & Mansour Hajji & Abdelmalek Kouadri & Kais Bouzrara & Hazem Nounou, 2023. "Wind Power Converter Fault Diagnosis Using Reduced Kernel PCA-Based BiLSTM," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3191-:d:1063260
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nakayama, Yugo & Yata, Kazuyoshi & Aoshima, Makoto, 2021. "Clustering by principal component analysis with Gaussian kernel in high-dimension, low-sample-size settings," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    2. Majdi Mansouri & Khaled Dhibi & Hazem Nounou & Mohamed Nounou, 2022. "An Effective Fault Diagnosis Technique for Wind Energy Conversion Systems Based on an Improved Particle Swarm Optimization," Sustainability, MDPI, vol. 14(18), pages 1-11, September.
    3. Chengdong Yang & Wenyin Zhang & Jilin Zou & Shunbo Hu & Jianlong Qiu, 2013. "Feature Selection in Decision Systems: A Mean-Variance Approach," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-8, May.
    4. Zahra Yahyaoui & Mansour Hajji & Majdi Mansouri & Kamaleldin Abodayeh & Kais Bouzrara & Hazem Nounou, 2022. "Effective Fault Detection and Diagnosis for Power Converters in Wind Turbine Systems Using KPCA-Based BiLSTM," Energies, MDPI, vol. 15(17), pages 1-19, August.
    5. Mansouri, Majdi & Hajji, Mansour & Trabelsi, Mohamed & Harkat, Mohamed Faouzi & Al-khazraji, Ayman & Livera, Andreas & Nounou, Hazem & Nounou, Mohamed, 2018. "An effective statistical fault detection technique for grid connected photovoltaic systems based on an improved generalized likelihood ratio test," Energy, Elsevier, vol. 159(C), pages 842-856.
    6. Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
    7. Cui, Jialin & Shen, Bo-Wen, 2021. "A kernel principal component analysis of coexisting attractors within a generalized Lorenz model," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Chen & Chengfeng Tao & Jie Tao & Yuyan Jiang & Ping Li, 2023. "Bearing Fault Diagnosis Using ACWGAN-GP Enhanced by Principal Component Analysis," Sustainability, MDPI, vol. 15(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egashira, Kento & Yata, Kazuyoshi & Aoshima, Makoto, 2024. "Asymptotic properties of hierarchical clustering in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    2. Boudy Bilal & Kaan Yetilmezsoy & Mohammed Ouassaid, 2024. "Benchmarking of Various Flexible Soft-Computing Strategies for the Accurate Estimation of Wind Turbine Output Power," Energies, MDPI, vol. 17(3), pages 1-36, February.
    3. Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
    4. Tian, Ai-Qing & Wang, Xiao-Yang & Xu, Heying & Pan, Jeng-Shyang & Snášel, Václav & Lv, Hong-Xia, 2024. "Multi-objective optimization model for railway heavy-haul traffic: Addressing carbon emissions reduction and transport efficiency improvement," Energy, Elsevier, vol. 294(C).
    5. Sufyan Samara & Emad Natsheh, 2020. "Intelligent PV Panels Fault Diagnosis Method Based on NARX Network and Linguistic Fuzzy Rule-Based Systems," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    6. Wang, Yan & Cheng, Wei & Feng, Junbo & Zang, Shengyin & Cheng, Hao & Peng, Zheng & Ren, Xiaodong & Shuai, Yubei & Liu, Hao & Pu, Xun & Yang, Junbo & Wu, Jiagui, 2022. "Silicon photonic secure communication using artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    7. Phong B. Dao, 2023. "On Cointegration Analysis for Condition Monitoring and Fault Detection of Wind Turbines Using SCADA Data," Energies, MDPI, vol. 16(5), pages 1-17, March.
    8. Tingting Pei & Xiaohong Hao, 2019. "A Fault Detection Method for Photovoltaic Systems Based on Voltage and Current Observation and Evaluation," Energies, MDPI, vol. 12(9), pages 1-16, May.
    9. Zahra Yahyaoui & Mansour Hajji & Majdi Mansouri & Kais Bouzrara, 2023. "One-Class Machine Learning Classifiers-Based Multivariate Feature Extraction for Grid-Connected PV Systems Monitoring under Irradiance Variations," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    10. Bakdi, Azzeddine & Bounoua, Wahiba & Mekhilef, Saad & Halabi, Laith M., 2019. "Nonparametric Kullback-divergence-PCA for intelligent mismatch detection and power quality monitoring in grid-connected rooftop PV," Energy, Elsevier, vol. 189(C).
    11. Juan Zhang & Zhongli Zhu & Huiqing Hao, 2023. "The Effects of Climate Variation and Anthropogenic Activity on Karst Spring Discharge Based on the Wavelet Coherence Analysis and the Multivariate Statistical," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    12. Andreas Livera & Georgios Tziolis & Jose G. Franquelo & Ruben Gonzalez Bernal & George E. Georghiou, 2022. "Cloud-Based Platform for Photovoltaic Assets Diagnosis and Maintenance," Energies, MDPI, vol. 15(20), pages 1-25, October.
    13. Fezai, R. & Mansouri, M. & Trabelsi, M. & Hajji, M. & Nounou, H. & Nounou, M., 2019. "Online reduced kernel GLRT technique for improved fault detection in photovoltaic systems," Energy, Elsevier, vol. 179(C), pages 1133-1154.
    14. Zhang, Shuo & Robinson, Emma & Basu, Malabika, 2022. "Hybrid Gaussian process regression and Fuzzy Inference System based approach for condition monitoring at the rotor side of a doubly fed induction generator," Renewable Energy, Elsevier, vol. 198(C), pages 936-946.
    15. Hussain, Muhammed & Dhimish, Mahmoud & Titarenko, Sofya & Mather, Peter, 2020. "Artificial neural network based photovoltaic fault detection algorithm integrating two bi-directional input parameters," Renewable Energy, Elsevier, vol. 155(C), pages 1272-1292.
    16. Jolliffe, Ian, 2022. "A 50-year personal journey through time with principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    17. Wang, Anqi & Pei, Yan & Zhu, Yunyi & Qian, Zheng, 2023. "Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern," Renewable Energy, Elsevier, vol. 211(C), pages 918-937.
    18. Fang, Shitong & Chen, Keyu & Lai, Zhihui & Zhou, Shengxi & Liao, Wei-Hsin, 2023. "Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations," Applied Energy, Elsevier, vol. 331(C).
    19. Rouani, Lahcene & Harkat, Mohamed Faouzi & Kouadri, Abdelmalek & Mekhilef, Saad, 2021. "Shading fault detection in a grid-connected PV system using vertices principal component analysis," Renewable Energy, Elsevier, vol. 164(C), pages 1527-1539.
    20. Ziqi Yuan & Guozhu Jia, 2022. "Systematic investigation of keywords selection and processing strategy on search engine forecasting: a case of tourist volume in Beijing," Information Technology & Tourism, Springer, vol. 24(4), pages 547-580, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3191-:d:1063260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.