IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2352-d1084351.html
   My bibliography  Save this article

On Cointegration Analysis for Condition Monitoring and Fault Detection of Wind Turbines Using SCADA Data

Author

Listed:
  • Phong B. Dao

    (Department of Robotics and Mechatronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

Cointegration theory has been recently proposed for condition monitoring and fault detection of wind turbines. However, the existing cointegration-based methods and results presented in the literature are limited and not encouraging enough for the broader deployment of the technique. To close this research gap, this paper presents a new investigation on cointegration for wind turbine monitoring using a four-year SCADA data set acquired from a commercial wind turbine. A gearbox fault is used as a testing case to validate the analysis. A cointegration-based wind turbine monitoring model is established using five process parameters, including the wind speed, generator speed, generator temperature, gearbox temperature, and generated power. Two different sets of SCADA data were used to train the cointegration-based model and calculate the normalized cointegrating vectors. The first training data set involves 12,000 samples recorded before the occurrence of the gearbox fault, whereas the second one includes 6000 samples acquired after the fault occurrence. Cointegration residuals—obtained from projecting the testing data (2000 samples including the gearbox fault event) on the normalized cointegrating vectors—are used in control charts for operational state monitoring and automated fault detection. The results demonstrate that regardless of which training data set was used, the cointegration residuals can effectively monitor the wind turbine and reliably detect the fault at the early stage. Interestingly, despite using different training data sets, the cointegration analysis creates two residuals which are almost identical in their shapes and trends. In addition, the gearbox fault can be detected by these two residuals at the same moment. These interesting findings have never been reported in the literature.

Suggested Citation

  • Phong B. Dao, 2023. "On Cointegration Analysis for Condition Monitoring and Fault Detection of Wind Turbines Using SCADA Data," Energies, MDPI, vol. 16(5), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2352-:d:1084351
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2352/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2352/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiang, Ling & Yang, Xin & Hu, Aijun & Su, Hao & Wang, Penghe, 2022. "Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks," Applied Energy, Elsevier, vol. 305(C).
    2. Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
    3. Kusiak, Andrew & Li, Wenyan, 2011. "The prediction and diagnosis of wind turbine faults," Renewable Energy, Elsevier, vol. 36(1), pages 16-23.
    4. Francesc Pozo & Yolanda Vidal & Óscar Salgado, 2018. "Wind Turbine Condition Monitoring Strategy through Multiway PCA and Multivariate Inference," Energies, MDPI, vol. 11(4), pages 1-19, March.
    5. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    6. Phong B. Dao, 2021. "A CUSUM-Based Approach for Condition Monitoring and Fault Diagnosis of Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    7. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    8. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    9. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Condition monitoring of wind turbine blades based on self-supervised health representation learning: A conducive technique to effective and reliable utilization of wind energy," Applied Energy, Elsevier, vol. 313(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. Ramakrishna Kini & Fouzi Harrou & Muddu Madakyaru & Ying Sun, 2023. "Enhancing Wind Turbine Performance: Statistical Detection of Sensor Faults Based on Improved Dynamic Independent Component Analysis," Energies, MDPI, vol. 16(15), pages 1-25, August.
    2. Paweł Knes & Phong B. Dao, 2024. "Machine Learning and Cointegration for Wind Turbine Monitoring and Fault Detection: From a Comparative Study to a Combined Approach," Energies, MDPI, vol. 17(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Anqi & Pei, Yan & Zhu, Yunyi & Qian, Zheng, 2023. "Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern," Renewable Energy, Elsevier, vol. 211(C), pages 918-937.
    2. Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
    3. Dao, Phong B., 2022. "Condition monitoring and fault diagnosis of wind turbines based on structural break detection in SCADA data," Renewable Energy, Elsevier, vol. 185(C), pages 641-654.
    4. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    5. Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
    6. Paweł Knes & Phong B. Dao, 2024. "Machine Learning and Cointegration for Wind Turbine Monitoring and Fault Detection: From a Comparative Study to a Combined Approach," Energies, MDPI, vol. 17(20), pages 1-21, October.
    7. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    8. Boudy Bilal & Kaan Yetilmezsoy & Mohammed Ouassaid, 2024. "Benchmarking of Various Flexible Soft-Computing Strategies for the Accurate Estimation of Wind Turbine Output Power," Energies, MDPI, vol. 17(3), pages 1-36, February.
    9. Alan Turnbull & Conor McKinnon & James Carrol & Alasdair McDonald, 2022. "On the Development of Offshore Wind Turbine Technology: An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market," Energies, MDPI, vol. 15(9), pages 1-20, April.
    10. Phong B. Dao, 2021. "A CUSUM-Based Approach for Condition Monitoring and Fault Diagnosis of Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    11. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    12. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    13. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    14. Mustafa Kaya, 2019. "A CFD Based Application of Support Vector Regression to Determine the Optimum Smooth Twist for Wind Turbine Blades," Sustainability, MDPI, vol. 11(16), pages 1-25, August.
    15. Sarah Barber & Luiz Andre Moyses Lima & Yoshiaki Sakagami & Julian Quick & Effi Latiffianti & Yichao Liu & Riccardo Ferrari & Simon Letzgus & Xujie Zhang & Florian Hammer, 2022. "Enabling Co-Innovation for a Successful Digital Transformation in Wind Energy Using a New Digital Ecosystem and a Fault Detection Case Study," Energies, MDPI, vol. 15(15), pages 1-32, August.
    16. Aziz, Usama & Charbonnier, Sylvie & Bérenguer, Christophe & Lebranchu, Alexis & Prevost, Frederic, 2021. "Critical comparison of power-based wind turbine fault-detection methods using a realistic framework for SCADA data simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Xiaoxun, Zhu & Xinyu, Hang & Xiaoxia, Gao & Xing, Yang & Zixu, Xu & Yu, Wang & Huaxin, Liu, 2022. "Research on crack detection method of wind turbine blade based on a deep learning method," Applied Energy, Elsevier, vol. 328(C).
    18. Zhang, Shuo & Robinson, Emma & Basu, Malabika, 2022. "Hybrid Gaussian process regression and Fuzzy Inference System based approach for condition monitoring at the rotor side of a doubly fed induction generator," Renewable Energy, Elsevier, vol. 198(C), pages 936-946.
    19. K. Ramakrishna Kini & Fouzi Harrou & Muddu Madakyaru & Ying Sun, 2023. "Enhancing Wind Turbine Performance: Statistical Detection of Sensor Faults Based on Improved Dynamic Independent Component Analysis," Energies, MDPI, vol. 16(15), pages 1-25, August.
    20. Davide Astolfi, 2023. "Wind Turbine Drivetrain Condition Monitoring through SCADA-Collected Temperature Data: Discussion of Selected Recent Papers," Energies, MDPI, vol. 16(9), pages 1-4, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2352-:d:1084351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.