IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2554-d1052710.html
   My bibliography  Save this article

An Energy-Saving Regulation Framework of Central Air Conditioning Based on Cloud–Edge–Device Architecture

Author

Listed:
  • Guofu Luo

    (Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

  • Tianxing Sun

    (Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

  • Haoqi Wang

    (Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

  • Hao Li

    (Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

  • Jiaqi Wang

    (Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

  • Zhuang Miao

    (Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

  • Honglei Si

    (Yilianxin Engineering Technology, Co., Zhengzhou 450002, China)

  • Fuliang Che

    (Yilianxin Engineering Technology, Co., Zhengzhou 450002, China)

  • Gen Liu

    (Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

Abstract

As energy plays a fundamental role in our modern life and most of a building’s energy is used for air conditioning, understanding the sustainable regulation theory of central air conditioning remains a significant scientific issue. In view of three shortcomings of existing energy-saving regulation methods of central air conditioning: (1) few studies on low-latency, high-reliability, and safer energy-saving control operation modes, (2) lack of consideration for human comfort, and (3) insufficient analysis of the comprehensive impact of the human–machine–environment, this paper proposes an energy-saving control framework of central air conditioning based on cloud–edge–device architecture. The framework establishes a prediction model of human comfort based on recurrent neural network. An intelligent energy-saving control strategy is proposed to ensure indoor personnel’s thermal comfort, considering the human–machine–environment factors. This study provides a basis for better understanding the sustainable control theory of building central air conditioning. Finally, the experiment proves that the proposed method can effectively reduce the energy consumption of central air conditioning. Compared with traditional regulation approaches, the proposed real-time control strategy can save up to 91% of energy consumption, depending on the environment, and advance control strategies can save an average of 4%.

Suggested Citation

  • Guofu Luo & Tianxing Sun & Haoqi Wang & Hao Li & Jiaqi Wang & Zhuang Miao & Honglei Si & Fuliang Che & Gen Liu, 2023. "An Energy-Saving Regulation Framework of Central Air Conditioning Based on Cloud–Edge–Device Architecture," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2554-:d:1052710
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmad Taki & Bilal Alsheglawi, 2022. "Toward Energy-Efficient Houses Considering Social Cultural Needs in Bahrain: A New Framework Approach," Sustainability, MDPI, vol. 14(11), pages 1-30, June.
    2. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    3. Huang, Sen & Zuo, Wangda & Sohn, Michael D., 2016. "Amelioration of the cooling load based chiller sequencing control," Applied Energy, Elsevier, vol. 168(C), pages 204-215.
    4. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    5. Chiam, Zhonglin & Easwaran, Arvind & Mouquet, David & Fazlollahi, Samira & Millás, Jaume V., 2019. "A hierarchical framework for holistic optimization of the operations of district cooling systems," Applied Energy, Elsevier, vol. 239(C), pages 23-40.
    6. Chi, Fang'ai & Zhang, Jianxun & Li, Gaomei & Zhu, Zongzhou & Bart, Dewancker, 2019. "An investigation of the impact of Building Azimuth on energy consumption in sizhai traditional dwellings," Energy, Elsevier, vol. 180(C), pages 594-614.
    7. Dasheng Lee & Fu-Po Tsai, 2020. "Air Conditioning Energy Saving from Cloud-Based Artificial Intelligence: Case Study of a Split-Type Air Conditioner," Energies, MDPI, vol. 13(8), pages 1-25, April.
    8. Syed Ahmad Farhan & Fouad Ismail Ismail & Osamah Kiwan & Nasir Shafiq & Azni Zain-Ahmed & Nadzhratul Husna & Afif Izwan Abd Hamid, 2021. "Effect of Roof Tile Colour on Heat Conduction Transfer, Roof-Top Surface Temperature and Cooling Load in Modern Residential Buildings under the Tropical Climate of Malaysia," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    9. Yu, F.W. & Chan, K.T., 2008. "Optimization of water-cooled chiller system with load-based speed control," Applied Energy, Elsevier, vol. 85(10), pages 931-950, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hinkelman, Kathryn & Wang, Jing & Zuo, Wangda & Gautier, Antoine & Wetter, Michael & Fan, Chengliang & Long, Nicholas, 2022. "Modelica-based modeling and simulation of district cooling systems: A case study," Applied Energy, Elsevier, vol. 311(C).
    2. Zabala, Laura & Febres, Jesus & Sterling, Raymond & López, Susana & Keane, Marcus, 2020. "Virtual testbed for model predictive control development in district cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    3. Chaudhuri, Tanaya & Soh, Yeng Chai & Li, Hua & Xie, Lihua, 2019. "A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings," Applied Energy, Elsevier, vol. 248(C), pages 44-53.
    4. Mu, Baojie & Li, Yaoyu & House, John M. & Salsbury, Timothy I., 2017. "Real-time optimization of a chilled water plant with parallel chillers based on extremum seeking control," Applied Energy, Elsevier, vol. 208(C), pages 766-781.
    5. Wang, Yijun & Jin, Xinqiao & Shi, Wantao & Wang, Jiangqing, 2019. "Online chiller loading strategy based on the near-optimal performance map for energy conservation," Applied Energy, Elsevier, vol. 238(C), pages 1444-1451.
    6. Sun, Shaobo & Shan, Kui & Wang, Shengwei, 2022. "An online robust sequencing control strategy for identical chillers using a probabilistic approach concerning flow measurement uncertainties," Applied Energy, Elsevier, vol. 317(C).
    7. Carolina Rodriguez & María Coronado & Marta D’Alessandro & Juan Medina, 2019. "The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    8. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    9. Ebrahim Morady & Madjid Soltani & Farshad Moradi Kashkooli & Masoud Ziabasharhagh & Armughan Al-Haq & Jatin Nathwani, 2022. "Improving Energy Efficiency by Utilizing Wetted Cellulose Pads in Passive Cooling Systems," Energies, MDPI, vol. 15(1), pages 1-17, January.
    10. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    11. Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
    12. Monica Santillan Vera & Lilia Garcia Manrique & Isabel Rodriguez Pena & Angel de la Vega Navarro, 2021. "Drivers of Electricity GHG Emissions and the Role of Natural Gas in Mexican Energy Transition," Working Paper Series 1021, Department of Economics, University of Sussex Business School.
    13. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    14. Mukhtar, A. & Ng, K.C. & Yusoff, M.Z., 2018. "Design optimization for ventilation shafts of naturally-ventilated underground shelters for improvement of ventilation rate and thermal comfort," Renewable Energy, Elsevier, vol. 115(C), pages 183-198.
    15. Girish Rentala & Yimin Zhu & Neil M. Johannsen, 2021. "Impact of Outdoor Temperature Variations on Thermal State in Experiments Using Immersive Virtual Environment," Sustainability, MDPI, vol. 13(19), pages 1-36, September.
    16. Catrini, Pietro & La Villetta, M. & Kumar, Dhirendran Munith & Morale, Massimo & Piacentino, Antonio, 2024. "Analysis of the operation of air-cooled chillers with variable-speed fans for advanced energy-saving-oriented control strategies," Applied Energy, Elsevier, vol. 367(C).
    17. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    18. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.
    19. Catrini, P. & Panno, D. & Cardona, F. & Piacentino, A., 2020. "Characterization of cooling loads in the wine industry and novel seasonal indicator for reliable assessment of energy saving through retrofit of chillers," Applied Energy, Elsevier, vol. 266(C).
    20. Małgorzata Fedorczak-Cisak & Katarzyna Nowak & Marcin Furtak, 2019. "Analysis of the Effect of Using External Venetian Blinds on the Thermal Comfort of Users of Highly Glazed Office Rooms in a Transition Season of Temperate Climate—Case Study," Energies, MDPI, vol. 13(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2554-:d:1052710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.