IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp183-198.html
   My bibliography  Save this article

Design optimization for ventilation shafts of naturally-ventilated underground shelters for improvement of ventilation rate and thermal comfort

Author

Listed:
  • Mukhtar, A.
  • Ng, K.C.
  • Yusoff, M.Z.

Abstract

A good ventilation system is essential for an underground shelter to provide a comfortable environment with better indoor air quality. Ventilation shafts are widely used for ventilation purpose in an underground shelter. In the current work, the position of the ventilation shaft is optimized by employing the Response Surface Methodology (RSM). Two RSMs are constructed. The first RSM is constructed by 32 CFD models via Fractional Factorial Design (FFD) and the second model is constructed by 53 CFD models via Central Composite Rotatable Design (CCRD). The first and the second models are subsequently analysed by using the linear and quadratic models, respectively. The result indicates that both models lead to similar predictions on the inputs (factors) that strongly affect the response. Moreover, the response surface values agree well with the CFD values. Based on desirability functions, the optimized design improves the ventilation system by 24.5% as compared to the actual design. Also, the optimized design meets the comfort temperature and design criteria recommended for a naturally-ventilated underground shelter. Overall, this study finds that statistical analysis is a useful tool for the improvements of ventilation rate and thermal comfort.

Suggested Citation

  • Mukhtar, A. & Ng, K.C. & Yusoff, M.Z., 2018. "Design optimization for ventilation shafts of naturally-ventilated underground shelters for improvement of ventilation rate and thermal comfort," Renewable Energy, Elsevier, vol. 115(C), pages 183-198.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:183-198
    DOI: 10.1016/j.renene.2017.08.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117308091
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.08.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammadshahi, Shabnam & Nili-Ahmadabadi, Mahdi & Nematollahi, Omid, 2016. "Improvement of ventilation and heat transfer in Shavadoon via numerical simulation: A traditional HVAC system," Renewable Energy, Elsevier, vol. 96(PA), pages 295-304.
    2. Chenari, Behrang & Dias Carrilho, João & Gameiro da Silva, Manuel, 2016. "Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1426-1447.
    3. Daghigh, R., 2015. "Assessing the thermal comfort and ventilation in Malaysia and the surrounding regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 681-691.
    4. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mukhtar, A. & Ng, K.C. & Yusoff, M.Z., 2018. "Passive thermal performance prediction and multi-objective optimization of naturally-ventilated underground shelter in Malaysia," Renewable Energy, Elsevier, vol. 123(C), pages 342-352.
    2. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    3. Xie, Yiwei & Hu, Pingfang & Zhu, Na & Lei, Fei & Xing, Lu & Xu, Linghong, 2020. "Collaborative optimization of ground source heat pump-radiant ceiling air conditioning system based on response surface method and NSGA-II," Renewable Energy, Elsevier, vol. 147(P1), pages 249-264.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    2. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    3. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    4. Mukhtar, A. & Ng, K.C. & Yusoff, M.Z., 2018. "Passive thermal performance prediction and multi-objective optimization of naturally-ventilated underground shelter in Malaysia," Renewable Energy, Elsevier, vol. 123(C), pages 342-352.
    5. Sakiyama, N.R.M. & Carlo, J.C. & Frick, J. & Garrecht, H., 2020. "Perspectives of naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    6. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Liu, Hongwu & Wang, Cheng, 2020. "An energy-saving control strategy for multi-zone demand controlled ventilation system with data-driven model and air balancing control," Energy, Elsevier, vol. 199(C).
    7. Liu, Peng & Justo Alonso, Maria & Mathisen, Hans Martin, 2023. "Global sensitivity analysis and optimal design of heat recovery ventilation for zero emission buildings," Applied Energy, Elsevier, vol. 329(C).
    8. Ma, Nan & Aviv, Dorit & Guo, Hongshan & Braham, William W., 2021. "Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. David Vérez & Luisa F. Cabeza, 2021. "Which Building Services Are Considered to Have Impact on Climate Change?," Energies, MDPI, vol. 14(13), pages 1-16, June.
    10. Ebrahim Morady & Madjid Soltani & Farshad Moradi Kashkooli & Masoud Ziabasharhagh & Armughan Al-Haq & Jatin Nathwani, 2022. "Improving Energy Efficiency by Utilizing Wetted Cellulose Pads in Passive Cooling Systems," Energies, MDPI, vol. 15(1), pages 1-17, January.
    11. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    12. Behzad Rismanchi & Juan Mahecha Zambrano & Bryan Saxby & Ross Tuck & Mark Stenning, 2019. "Control Strategies in Multi-Zone Air Conditioning Systems," Energies, MDPI, vol. 12(3), pages 1-14, January.
    13. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    14. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    15. Małgorzata Fedorczak-Cisak & Katarzyna Nowak & Marcin Furtak, 2019. "Analysis of the Effect of Using External Venetian Blinds on the Thermal Comfort of Users of Highly Glazed Office Rooms in a Transition Season of Temperate Climate—Case Study," Energies, MDPI, vol. 13(1), pages 1-18, December.
    16. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    17. Shady Attia, 2020. "Spatial and Behavioral Thermal Adaptation in Net Zero Energy Buildings: An Exploratory Investigation," Sustainability, MDPI, vol. 12(19), pages 1-15, September.
    18. Li, Biao & Han, Zongwei & Bai, Chenguang & Hu, Honghao, 2019. "The influence of soil thermal properties on the operation performance on ground source heat pump system," Renewable Energy, Elsevier, vol. 141(C), pages 903-913.
    19. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Magnouréwa Josiane Tossim & Parfait Altolnan Tombar & Sinko Banakinao & Célestin Adeito Mavunda & Tchakouni Sondou & Cyprien Coffi Aholou & Yawovi Mawuénya Xolali Dany Ayité, 2024. "Analysis of the Choice of Cement in Construction and Its Impact on Comfort in Togo," Sustainability, MDPI, vol. 16(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:183-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.