IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v180y2019icp594-614.html
   My bibliography  Save this article

An investigation of the impact of Building Azimuth on energy consumption in sizhai traditional dwellings

Author

Listed:
  • Chi, Fang'ai
  • Zhang, Jianxun
  • Li, Gaomei
  • Zhu, Zongzhou
  • Bart, Dewancker

Abstract

Building orientation is one of the driving factors that impacts building energy consumption, which deserves to be studied. The Sizhai traditional dwellings located in Zhejiang province were chosen as the study buildings in this paper. The geometric model was rotated at 20° increments clockwise to create a total of 18 test scenarios. Integration of virtual simulation in software, the thermal and daylighting performances in 18 test scenarios were simulated to assess their indoor comfort levels in terms of the indoor temperature, air velocity and illuminance. Furthermore, the indoor comfort level has an impact on the energy consumption of building. To this end, the electricity consumption of air conditioner (AC), electrical ventilation and artificial lighting, as well as the total annual electricity consumption including AC, electrical ventilation and artificial lighting were computed by software to explore the optimum Building Azimuth (BA). The results show that a total annual electricity cost difference of approximately 150 kW h throughout a year between the best (S) and worst (N-W80) BA of the building was achieved. By performing BA measurement for all dwellings in Sizhai village, the conclusion is that this village has a high energy saving potential.

Suggested Citation

  • Chi, Fang'ai & Zhang, Jianxun & Li, Gaomei & Zhu, Zongzhou & Bart, Dewancker, 2019. "An investigation of the impact of Building Azimuth on energy consumption in sizhai traditional dwellings," Energy, Elsevier, vol. 180(C), pages 594-614.
  • Handle: RePEc:eee:energy:v:180:y:2019:i:c:p:594-614
    DOI: 10.1016/j.energy.2019.05.114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421930996X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abanda, F.H. & Byers, L., 2016. "An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling)," Energy, Elsevier, vol. 97(C), pages 517-527.
    2. Chan, A.L.S., 2012. "Effect of adjacent shading on the thermal performance of residential buildings in a subtropical region," Applied Energy, Elsevier, vol. 92(C), pages 516-522.
    3. Leth-Petersen, Soren & Togeby, Mikael, 2001. "Demand for space heating in apartment blocks: measuring effects of policy measures aiming at reducing energy consumption," Energy Economics, Elsevier, vol. 23(4), pages 387-403, July.
    4. Singh, M.C. & Garg, S.N., 2010. "Illuminance estimation and daylighting energy savings for Indian regions," Renewable Energy, Elsevier, vol. 35(3), pages 703-711.
    5. Brandão de Vasconcelos, Ana & Cabaço, António & Pinheiro, Manuel Duarte & Manso, Armando, 2016. "The impact of building orientation and discount rates on a Portuguese reference building refurbishment decision," Energy Policy, Elsevier, vol. 91(C), pages 329-340.
    6. Pacheco, R. & Ordóñez, J. & Martínez, G., 2012. "Energy efficient design of building: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3559-3573.
    7. Morrissey, J. & Moore, T. & Horne, R.E., 2011. "Affordable passive solar design in a temperate climate: An experiment in residential building orientation," Renewable Energy, Elsevier, vol. 36(2), pages 568-577.
    8. Acosta, Ignacio & Campano, Miguel Ángel & Molina, Juan Francisco, 2016. "Window design in architecture: Analysis of energy savings for lighting and visual comfort in residential spaces," Applied Energy, Elsevier, vol. 168(C), pages 493-506.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simin Yang & Bart J. Dewancker & Shuo Chen, 2021. "Study on the Passive Heating System of a Heated Cooking Wall in Dwellings: A Case Study of Traditional Dwellings in Southern Shaanxi, China," IJERPH, MDPI, vol. 18(7), pages 1-31, April.
    2. Chi, Fang'ai & Xu, Ying & Wang, Xueru, 2022. "Transparent part design optimizations in buildings towards energy saving based on customized radiation sky dome model," Energy, Elsevier, vol. 253(C).
    3. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
    4. Reza Khakian & Mehrdad Karimimoshaver & Farshid Aram & Soghra Zoroufchi Benis & Amir Mosavi & Annamaria R. Varkonyi-Koczy, 2020. "Modeling Nearly Zero Energy Buildings for Sustainable Development in Rural Areas," Energies, MDPI, vol. 13(10), pages 1-19, May.
    5. Guofu Luo & Tianxing Sun & Haoqi Wang & Hao Li & Jiaqi Wang & Zhuang Miao & Honglei Si & Fuliang Che & Gen Liu, 2023. "An Energy-Saving Regulation Framework of Central Air Conditioning Based on Cloud–Edge–Device Architecture," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    6. Zhao, Xi & Nie, Ping & Zhu, Jiayin & Tong, Liping & Liu, Yingfang, 2020. "Evaluation of thermal environments for cliff-side cave dwellings in cold region of China," Renewable Energy, Elsevier, vol. 158(C), pages 154-166.
    7. Chi, Fang'ai & Xu, Ying & Pan, Jiajie, 2022. "Impact of shading systems with various type-number configuration combinations on energy consumption in traditional dwelling (China)," Energy, Elsevier, vol. 255(C).
    8. Simin Yang & Bart Dewancker & Shuo Chen, 2021. "Study on Passive Heating Involving Firewalls with an Additional Sunlight Room in Rural Residential Buildings," IJERPH, MDPI, vol. 18(21), pages 1-31, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xi & Yang, Hongxing & Lu, Lin, 2015. "A comprehensive review on passive design approaches in green building rating tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1425-1436.
    2. Abanda, F.H. & Byers, L., 2016. "An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling)," Energy, Elsevier, vol. 97(C), pages 517-527.
    3. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    4. Baloch, Ashfaque Ahmed & Shaikh, Pervez Hameed & Shaikh, Faheemullah & Leghari, Zohaib Hussain & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2018. "Simulation tools application for artificial lighting in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3007-3026.
    5. Shahbaz Nasir Khan & Muhammad Shahzaib, 2022. "Energy Efficient Building Design: Timber Frame Construction Based In Hemp Fiber Insulation," Engineering Heritage Journal (GWK), Zibeline International Publishing, vol. 6(1), pages 31-33, October.
    6. So-Young Lee & Myoung-Won Oh, 2020. "Sustainable Design Alternatives and Energy Efficiency for Public Rental Housing in Korea," Sustainability, MDPI, vol. 12(20), pages 1-26, October.
    7. Das, Aparna & Paul, Saikat Kumar, 2015. "Artificial illumination during daytime in residential buildings: Factors, energy implications and future predictions," Applied Energy, Elsevier, vol. 158(C), pages 65-85.
    8. Karunathilake, Hirushie & Hewage, Kasun & Sadiq, Rehan, 2018. "Opportunities and challenges in energy demand reduction for Canadian residential sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2005-2016.
    9. Li, Y. & Arulnathan, V. & Heidari, M.D. & Pelletier, N., 2022. "Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Simin Yang & Bart J. Dewancker & Shuo Chen, 2021. "Study on the Passive Heating System of a Heated Cooking Wall in Dwellings: A Case Study of Traditional Dwellings in Southern Shaanxi, China," IJERPH, MDPI, vol. 18(7), pages 1-31, April.
    11. Dorothée Charlier & Sondès Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, , vol. 40(2), pages 101-138, March.
    12. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    13. Meier, Helena & Rehdanz, Katrin, 2010. "Determinants of residential space heating expenditures in Great Britain," Energy Economics, Elsevier, vol. 32(5), pages 949-959, September.
    14. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    15. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    16. Seok-Hyun Kim & Hakgeun Jeong & Soo Cho, 2019. "A Study on Changes of Window Thermal Performance by Analysis of Physical Test Results in Korea," Energies, MDPI, vol. 12(20), pages 1-17, October.
    17. Shen, Meng & Li, Xiang & Lu, Yujie & Cui, Qingbin & Wei, Yi-Ming, 2021. "Personality-based normative feedback intervention for energy conservation," Energy Economics, Elsevier, vol. 104(C).
    18. Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
    19. Shi, Qian & Lai, Xiaodong & Xie, Xin & Zuo, Jian, 2014. "Assessment of green building policies – A fuzzy impact matrix approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 203-211.
    20. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:180:y:2019:i:c:p:594-614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.