IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics0306261924006767.html
   My bibliography  Save this article

Bridging data barriers among participants: Assessing the potential of geoenergy through federated learning

Author

Listed:
  • Peng, Weike
  • Gao, Jiaxin
  • Chen, Yuntian
  • Wang, Shengwei

Abstract

Machine learning algorithm emerges as a promising approach in energy fields, but its practicality is hindered by data barriers, stemming from high collection costs and privacy concerns. This study introduces a novel federated learning (FL) framework based on XGBoost models, enabling safe collaborative modeling with accessible yet concealed data from multiple parties. Hyperparameter tuning of the models is achieved through Bayesian Optimization. To ascertain the merits of the proposed FL-XGBoost method, a comparative analysis is conducted between separate and centralized models to address a classical binary classification problem in the geoenergy sector. The results reveal that the proposed FL framework strikes an optimal balance between privacy and accuracy. FL models demonstrate superior accuracy and generalization capabilities compared to separate models, particularly for participants with limited data or low correlation features, and offer significant privacy benefits compared to centralized models. The aggregated optimization approach within the FL agreement proves effective in tuning hyperparameters. This study opens new avenues for assessing unconventional reservoirs through collaborative and privacy-preserving FL techniques.

Suggested Citation

  • Peng, Weike & Gao, Jiaxin & Chen, Yuntian & Wang, Shengwei, 2024. "Bridging data barriers among participants: Assessing the potential of geoenergy through federated learning," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924006767
    DOI: 10.1016/j.apenergy.2024.123293
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924006767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.