IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2805-d1410757.html
   My bibliography  Save this article

A Review of Wind Turbine Icing and Anti/De-Icing Technologies

Author

Listed:
  • Zhijin Zhang

    (Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, Chongqing University, Chongqing 400044, China)

  • Hang Zhang

    (Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, Chongqing University, Chongqing 400044, China)

  • Xu Zhang

    (Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, Chongqing University, Chongqing 400044, China)

  • Qin Hu

    (Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, Chongqing University, Chongqing 400044, China)

  • Xingliang Jiang

    (Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, Chongqing University, Chongqing 400044, China)

Abstract

The development and utilization of clean energy is becoming more extensive, and wind power generation is one of the key points of this. Occasionally, wind turbines are faced with various extreme environmental impacts such as icing, lightning strikes and so on. In particular, the icing of wind turbines increases icing–wind loads, and results in a reduced power output. And blades broken down lead to large-area shutdown accidents caused by high-speed rotating, which seriously affects the reliability and equipment safety of wind power generation. Relevant institutions and researchers at home and abroad have carried out a lot of research on this. This paper summarizes the formation and influencing factors of wind turbine icing, the influence of icing on wind power generation, and defense technologies. First, it introduces the formation conditions and mechanisms of icing in wind farm regions and the relationship between meteorological and climatic characteristics and icing, and analyzes the key influence factors on icing. Then, the impact of icing on wind turbines is explained from the aspects of mechanical operation, the power curve, jeopardies and economic benefits. And then the monitoring and safety status of wind turbines icing is analyzed, which involves collecting the relevant research on anti-de-icing in wind power generation, introducing various anti/de-icing technologies, and analyzing the principle of icing defense. Finally, this paper summarizes wind turbine icing and its defense technologies, and puts forward the future research direction based on the existing problems of wind power generation icing.

Suggested Citation

  • Zhijin Zhang & Hang Zhang & Xu Zhang & Qin Hu & Xingliang Jiang, 2024. "A Review of Wind Turbine Icing and Anti/De-Icing Technologies," Energies, MDPI, vol. 17(12), pages 1-34, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2805-:d:1410757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2805/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2805/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sima Rastayesh & Lijia Long & John Dalsgaard Sørensen & Sebastian Thöns, 2019. "Risk Assessment and Value of Action Analysis for Icing Conditions of Wind Turbines Close to Highways," Energies, MDPI, vol. 12(14), pages 1-15, July.
    2. Mu, Zhongqiu & Guo, Wenfeng & Li, Yan & Tagawa, Kotaro, 2023. "Wind tunnel test of ice accretion on blade airfoil for wind turbine under offshore atmospheric condition," Renewable Energy, Elsevier, vol. 209(C), pages 42-52.
    3. Hacıefendioğlu, Kemal & Başağa, Hasan Basri & Yavuz, Zafer & Karimi, Mohammad Tordi, 2022. "Intelligent ice detection on wind turbine blades using semantic segmentation and class activation map approaches based on deep learning method," Renewable Energy, Elsevier, vol. 182(C), pages 1-16.
    4. Daniliuk, Vladislav & Xu, Yuanming & Liu, Ruobing & He, Tianpeng & Wang, Xi, 2020. "Ultrasonic de-icing of wind turbine blades: Performance comparison of perspective transducers," Renewable Energy, Elsevier, vol. 145(C), pages 2005-2018.
    5. Owusu, Kwadwo Poku & Kuhn, David C.S. & Bibeau, Eric L., 2013. "Capacitive probe for ice detection and accretion rate measurement: Proof of concept," Renewable Energy, Elsevier, vol. 50(C), pages 196-205.
    6. Lijun Zhang & Kai Liu & Yufeng Wang & Zachary Bosire Omariba, 2018. "Ice Detection Model of Wind Turbine Blades Based on Random Forest Classifier," Energies, MDPI, vol. 11(10), pages 1-15, September.
    7. Wang, Qiang & Yi, Xian & Liu, Yu & Ren, Jinghao & Li, Weihao & Wang, Qiao & Lai, Qingren, 2020. "Simulation and analysis of wind turbine ice accretion under yaw condition via an Improved Multi-Shot Icing Computational Model," Renewable Energy, Elsevier, vol. 162(C), pages 1854-1873.
    8. Chang Cai & Jicai Guo & Xiaowen Song & Yanfeng Zhang & Jianxin Wu & Shufeng Tang & Yan Jia & Zhitai Xing & Qing’an Li, 2023. "Review of Data-Driven Approaches for Wind Turbine Blade Icing Detection," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Kabardin & Sergey Dvoynishnikov & Maxim Gordienko & Sergey Kakaulin & Vadim Ledovsky & Grigoriy Gusev & Vladislav Zuev & Valery Okulov, 2021. "Optical Methods for Measuring Icing of Wind Turbine Blades," Energies, MDPI, vol. 14(20), pages 1-14, October.
    2. Chang Cai & Jicai Guo & Xiaowen Song & Yanfeng Zhang & Jianxin Wu & Shufeng Tang & Yan Jia & Zhitai Xing & Qing’an Li, 2023. "Review of Data-Driven Approaches for Wind Turbine Blade Icing Detection," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    3. Dimitris Al. Katsaprakakis & Nikos Papadakis & Ioannis Ntintakis, 2021. "A Comprehensive Analysis of Wind Turbine Blade Damage," Energies, MDPI, vol. 14(18), pages 1-31, September.
    4. Cheng Tao & Tao Tao & Xinjian Bai & Yongqian Liu, 2023. "Wind Turbine Blade Icing Prediction Using Focal Loss Function and CNN-Attention-GRU Algorithm," Energies, MDPI, vol. 16(15), pages 1-15, July.
    5. Fan Cai & Yuesong Jiang & Wanqing Song & Kai-Hung Lu & Tongbo Zhu, 2024. "Short-Term Wind Turbine Blade Icing Wind Power Prediction Based on PCA-fLsm," Energies, MDPI, vol. 17(6), pages 1-15, March.
    6. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    7. Miguel Moreira & Frederico Rodrigues & Sílvio Cândido & Guilherme Santos & José Páscoa, 2023. "Development of a Background-Oriented Schlieren (BOS) System for Thermal Characterization of Flow Induced by Plasma Actuators," Energies, MDPI, vol. 16(1), pages 1-17, January.
    8. Xu, Zhi & Zhang, Ting & Li, Xiaojuan & Li, Yan, 2023. "Effects of ambient temperature and wind speed on icing characteristics and anti-icing energy demand of a blade airfoil for wind turbine," Renewable Energy, Elsevier, vol. 217(C).
    9. Wang, Zixuan & Qin, Bo & Sun, Haiyue & Zhang, Jian & Butala, Mark D. & Demartino, Cristoforo & Peng, Peng & Wang, Hongwei, 2023. "An imbalanced semi-supervised wind turbine blade icing detection method based on contrastive learning," Renewable Energy, Elsevier, vol. 212(C), pages 251-262.
    10. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    11. Gregory Duthé & Imad Abdallah & Sarah Barber & Eleni Chatzi, 2021. "Modeling and Monitoring Erosion of the Leading Edge of Wind Turbine Blades," Energies, MDPI, vol. 14(21), pages 1-33, November.
    12. Samet Ozturk & Vasilis Fthenakis, 2020. "Predicting Frequency, Time-To-Repair and Costs of Wind Turbine Failures," Energies, MDPI, vol. 13(5), pages 1-25, March.
    13. Huan Song & Yongguang Hu & Yongzong Lu & Jizhang Wang & Qingmin Pan & Pingping Li, 2021. "A Review of Methods and Techniques for Detecting Frost on Plant Surfaces," Agriculture, MDPI, vol. 11(11), pages 1-22, November.
    14. Gao, Linyue & Tao, Tao & Liu, Yongqian & Hu, Hui, 2021. "A field study of ice accretion and its effects on the power production of utility-scale wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 917-928.
    15. Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Guo, Jinghui & Ge, Kun & Wang, Jiaqi & He, Xi & Wen, Dongsheng, 2023. "2D Numerical investigation of surface wettability induced liquid water flow on the surface of the NACA0012 airfoil," Renewable Energy, Elsevier, vol. 205(C), pages 326-339.
    16. Yanpeng Hao & Zhaohong Yao & Junke Wang & Hao Li & Ruihai Li & Lin Yang & Wei Liang, 2019. "A Classification Method for Transmission Line Icing Process Curve Based on Hierarchical K-Means Clustering," Energies, MDPI, vol. 12(24), pages 1-14, December.
    17. Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Bu, Xueqin & Cai, Chujiang & Jia, Qi & Ma, Kuiyuan & Wen, Dongsheng, 2021. "Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel," Renewable Energy, Elsevier, vol. 179(C), pages 1179-1190.
    18. Guo, Peng & Infield, David, 2021. "Wind turbine blade icing detection with multi-model collaborative monitoring method," Renewable Energy, Elsevier, vol. 179(C), pages 1098-1105.
    19. Sun, Shilin & Li, Qi & Hu, Wenyang & Liang, Zhongchao & Wang, Tianyang & Chu, Fulei, 2023. "Wind turbine blade breakage detection based on environment-adapted contrastive learning," Renewable Energy, Elsevier, vol. 219(P2).
    20. Xiyun Yang & Tianze Ye & Qile Wang & Zhun Tao, 2020. "Diagnosis of Blade Icing Using Multiple Intelligent Algorithms," Energies, MDPI, vol. 13(11), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2805-:d:1410757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.