IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i21p15362-d1268825.html
   My bibliography  Save this article

Conversion of Vacuum Residue from Refinery Waste to Cleaner Fuel: Technical and Economic Assessment

Author

Listed:
  • Ammr M. Khurmy

    (Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
    Petrochemical and Conversion Industries Sector, Ministry of Investment of Saudi Arabia, Riyadh 12382, Saudi Arabia)

  • Ahmad Al Harbi

    (Engineering Department, Sadara Chemical Company, Jubail 35412, Saudi Arabia)

  • Abdul Gani Abdul Jameel

    (Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
    Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
    SDAIA-KFUPM Joint Research Center for Artificial Intelligence, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Nabeel Ahmad

    (Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Usama Ahmed

    (Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
    Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

Abstract

Environmental concerns surrounding the use of high-sulfur fuel oil (HFO), a marine fuel derived from refinery vacuum residue, motivate the exploration of alternative solutions. Burning high-sulfur fuel oil (HFO) is a major source of air pollution, acid rain, ocean acidification, and climate change. When HFO is burned, it releases sulfur dioxide (SO 2 ) into the air, a harmful gas that can cause respiratory problems, heart disease, and cancer. SO 2 emissions can also contribute to acid rain, which can damage forests and lakes. Several countries and international organizations have taken steps to reduce HFO emissions from ships. For example, the International Maritime Organization (IMO) has implemented a global sulfur cap for marine fuels, which limits the sulfur content of fuel to 0.5% by mass. In addition, there is a worldwide effort to encourage the use of low-carbon gases to help reduce greenhouse gas (GHG) emissions. There are several alternative fuels that can be used in ships instead of HFO, such as liquefied natural gas (LNG), methanol, and hydrogen. These fuels are cleaner and more environmentally friendly than HFO. The aim of this study is to develop a process integration framework to co-produce methanol and hydrogen from vacuum residue while minimizing the sulfur and carbon emissions. Two process models have been developed in this study to produce methanol and hydrogen from vacuum residue. In case 1, vacuum residue is gasified using oxygen—steam and the syngas leaving the gasifier is processed to produce both methanol and hydrogen. Case 2 shares the same process model as case 1 except it is concentrated on mainly methanol production from vacuum residue. Both models are techno-economically compared in terms of methanol and H 2 production rates, specific energy requirements, carbon conversion, CO 2 specific emissions, overall process efficiencies, and project feasibility while considering the fluctuation of vacuum residue feed price from 0.022 $/kg to 0.11 $/kg. The comparative analysis showed that case 2 offers an 86.01% lower specific energy requirement (GJ) for each kilogram (kg) of fuel produced. The CO 2 specific emission also decreased in case 2 by 69.76% compared to case 1. In addition, the calculated total net fuel production cost is 0.453 $/kg and 0.223 $/kg at 0.066 $/kg for case 1 and 2, respectively. Overall, case 2 exhibits better project feasibility compared to case 1 with higher process performance and lower production costs.

Suggested Citation

  • Ammr M. Khurmy & Ahmad Al Harbi & Abdul Gani Abdul Jameel & Nabeel Ahmad & Usama Ahmed, 2023. "Conversion of Vacuum Residue from Refinery Waste to Cleaner Fuel: Technical and Economic Assessment," Sustainability, MDPI, vol. 15(21), pages 1-28, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15362-:d:1268825
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/21/15362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/21/15362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Domenichini, R. & Gallio, M. & Lazzaretto, A., 2010. "Combined production of hydrogen and power from heavy oil gasification: Pinch analysis, thermodynamic and economic evaluations," Energy, Elsevier, vol. 35(5), pages 2184-2193.
    2. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jianjun & Lam, Hon Loong & Qian, Yu & Yang, Siyu, 2021. "Combined energy consumption and CO2 capture management: Improved acid gas removal process integrated with CO2 liquefaction," Energy, Elsevier, vol. 215(PA).
    2. Kim, Mukyeong & Ye, Insoo & Jo, Hyunbin & Ryu, Changkook & Kim, Bongkeun & Lee, Jeongsoo, 2020. "New reduced-order model optimized for online dynamic simulation of a Shell coal gasifier," Applied Energy, Elsevier, vol. 263(C).
    3. Liszka, Marcin & Malik, Tomasz & Manfrida, Giampaolo, 2012. "Energy and exergy analysis of hydrogen-oriented coal gasification with CO2 capture," Energy, Elsevier, vol. 45(1), pages 142-150.
    4. Esmaeil Jadidi & Mohammad Hasan Khoshgoftar Manesh & Mostafa Delpisheh & Viviani Caroline Onishi, 2021. "Advanced Exergy, Exergoeconomic, and Exergoenvironmental Analyses of Integrated Solar-Assisted Gasification Cycle for Producing Power and Steam from Heavy Refinery Fuels," Energies, MDPI, vol. 14(24), pages 1-29, December.
    5. Qin, Shiyue & Zhang, Xuzhi & Wang, Ming & Cui, Hongyou & Li, Zhihe & Yi, Weiming, 2021. "Comparison of BGL and Lurgi gasification for coal to liquid fuels (CTL): Process modeling, simulation and thermodynamic analysis," Energy, Elsevier, vol. 229(C).
    6. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Xiao, Juan & Wang, Simin & Ye, Shupei & Dong, Jiayu & Wen, Jian & Zhang, Zaoxiao, 2020. "Thermo-economic optimization of gasification process with coal water slurry preheating technology," Energy, Elsevier, vol. 199(C).
    8. Martínez González, Aldemar & Silva Lora, Electo Eduardo & Escobar Palacio, José Carlos, 2019. "Syngas production from oil sludge gasification and its potential use in power generation systems: An energy and exergy analysis," Energy, Elsevier, vol. 169(C), pages 1175-1190.
    9. Im-orb, Karittha & Arpornwichanop, Amornchai, 2016. "Techno-environmental analysis of the biomass gasification and Fischer-Tropsch integrated process for the co-production of bio-fuel and power," Energy, Elsevier, vol. 112(C), pages 121-132.
    10. Bandeira Santos, Alex Álisson & Torres, Ednildo Andrade & de Paula Pereira, Pedro Afonso, 2011. "Experimental investigation of the natural gas confined flames using the OEC," Energy, Elsevier, vol. 36(3), pages 1527-1534.
    11. Bahadori, Alireza & Vuthaluru, Hari B., 2010. "A method for estimation of recoverable heat from blowdown systems during steam generation," Energy, Elsevier, vol. 35(8), pages 3501-3507.
    12. Xu, Haoran & Maroto-Valer, M. Mercedes & Ni, Meng & Cao, Jun & Xuan, Jin, 2019. "Low carbon fuel production from combined solid oxide CO2 co-electrolysis and Fischer-Tropsch synthesis system: A modelling study," Applied Energy, Elsevier, vol. 242(C), pages 911-918.
    13. Dongliang, Wang & Wenliang, Meng & Huairong, Zhou & Guixian, Li & Yong, Yang & Hongwei, Li, 2021. "Green hydrogen coupling with CO2 utilization of coal-to-methanol for high methanol productivity and low CO2 emission," Energy, Elsevier, vol. 231(C).
    14. Ling, Zhongqian & Zhou, Hao & Ren, Tao, 2015. "Effect of the flue gas recirculation supply location on the heavy oil combustion and NOx emission characteristics within a pilot furnace fired by a swirl burner," Energy, Elsevier, vol. 91(C), pages 110-116.
    15. Qin, Shiyue & Wang, Ming & Cui, Hongyou & Li, Zhihe & Yi, Weiming, 2022. "Opportunities for renewable electricity utilization in coal to liquid fuels process: Thermodynamic and techo-economic analysis," Energy, Elsevier, vol. 239(PA).
    16. Wang, Dandan & Li, Sheng & He, Song & Gao, Lin, 2019. "Coal to substitute natural gas based on combined coal-steam gasification and one-step methanation," Applied Energy, Elsevier, vol. 240(C), pages 851-859.
    17. Du, S. & Wang, R.Z. & Xia, Z.Z., 2014. "Optimal ammonia water absorption refrigeration cycle with maximum internal heat recovery derived from pinch technology," Energy, Elsevier, vol. 68(C), pages 862-869.
    18. Larson, Eric D. & Kreutz, Thomas G. & Greig, Chris & Williams, Robert H. & Rooney, Tim & Gray, Edward & Elsido, Cristina & Martelli, Emanuele & Meerman, Johannes C., 2020. "Design and analysis of a low-carbon lignite/biomass-to-jet fuel demonstration project," Applied Energy, Elsevier, vol. 260(C).
    19. Sunel Kumar & Zhihua Wang & Yong He & Yanqun Zhu & Kefa Cen, 2022. "Numerical Analysis for Coal Gasification Performance in a Lab-Scale Gasifier: Effects of the Wall Temperature and Oxygen/Coal Ratio," Energies, MDPI, vol. 15(22), pages 1-15, November.
    20. Dimopoulos, George G. & Stefanatos, Iason C. & Kakalis, Nikolaos M.P., 2013. "Exergy analysis and optimisation of a steam methane pre-reforming system," Energy, Elsevier, vol. 58(C), pages 17-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15362-:d:1268825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.