IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v260y2020ics0306261919318963.html
   My bibliography  Save this article

Design and analysis of a low-carbon lignite/biomass-to-jet fuel demonstration project

Author

Listed:
  • Larson, Eric D.
  • Kreutz, Thomas G.
  • Greig, Chris
  • Williams, Robert H.
  • Rooney, Tim
  • Gray, Edward
  • Elsido, Cristina
  • Martelli, Emanuele
  • Meerman, Johannes C.

Abstract

Biomass-derived synthetic jet fuel with low net greenhouse gas emissions can help decarbonize aviation. Demonstration projects are required to show technical feasibility and give confidence to investors in large commercial-scale deployments. Most previous literature focuses on assessing future commercial-scale systems, for which performance and costs will differ considerably from demonstration projects. Here, a detailed analysis is presented for a first-of-a-kind demonstration plant that would be built in the Southeastern US. The plant, which cogasifies biomass and lignite and captures CO2 prior to Fischer-Tropsch synthesis, was designed and simulated using Aspen Plus. The process heat recovery system was designed using a systematic optimization method. Lifecycle analysis was used to assess net greenhouse gas emissions. Capital and operating cost estimates were developed in collaboration with a major engineering firm. The plant produces 1252 barrels per day (80% jet fuel), exports 15 MWe (net), and has a net energy efficiency of 35.8% (lower heating value). Captured CO2 (1326 t/d) is sold for use in enhanced oil recovery. With biomass coming from sustainably-managed pine plantations, net lifecycle greenhouse gas emissions are well below those for petroleum jet fuel. The estimated range of capital required to build the plant is 3875–5762 $/kWth of feedstock input (2015$). As expected for a small demonstration designed to minimize technological risks, subsidies are required for the jet fuel product to compete with petroleum jet fuel. Technology innovations, learning via construction and operating experience, and larger plant scales will improve the economics of future commercial plants.

Suggested Citation

  • Larson, Eric D. & Kreutz, Thomas G. & Greig, Chris & Williams, Robert H. & Rooney, Tim & Gray, Edward & Elsido, Cristina & Martelli, Emanuele & Meerman, Johannes C., 2020. "Design and analysis of a low-carbon lignite/biomass-to-jet fuel demonstration project," Applied Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919318963
    DOI: 10.1016/j.apenergy.2019.114209
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919318963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Young-Doo & Yang, Chang-Won & Kim, Beom-Jong & Moon, Ji-Hong & Jeong, Jae-Yong & Jeong, Soo-Hwa & Lee, See-Hoon & Kim, Jae-Ho & Seo, Myung-Won & Lee, Sang-Bong & Kim, Jae-Kon & Lee, Uen-Do, 2016. "Fischer–tropsch diesel production and evaluation as alternative automotive fuel in pilot-scale integrated biomass-to-liquid process," Applied Energy, Elsevier, vol. 180(C), pages 301-312.
    2. Elsido, Cristina & Martelli, Emanuele & Kreutz, Thomas, 2019. "Heat integration and heat recovery steam cycle optimization for a low-carbon lignite/biomass-to-jet fuel demonstration project," Applied Energy, Elsevier, vol. 239(C), pages 1322-1342.
    3. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
    4. Liu, Guangrui & Yan, Beibei & Chen, Guanyi, 2013. "Technical review on jet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 59-70.
    5. Trivedi, Parthsarathi & Olcay, Hakan & Staples, Mark D. & Withers, Mitch R. & Malina, Robert & Barrett, Steven R.H., 2015. "Energy return on investment for alternative jet fuels," Applied Energy, Elsevier, vol. 141(C), pages 167-174.
    6. Xu, Gang & Yang, Yong-ping & Lu, Shi-yuan & Li, Le & Song, Xiaona, 2011. "Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process," Energy Policy, Elsevier, vol. 39(5), pages 2343-2351, May.
    7. Huang, Yi & Yi, Qun & Wei, Guo-qiang & Kang, Jing-xian & Li, Wen-ying & Feng, Jie & Xie, Ke-chang, 2018. "Energy use, greenhouse gases emission and cost effectiveness of an integrated high– and low–temperature Fisher–Tropsch synthesis plant from a lifecycle viewpoint," Applied Energy, Elsevier, vol. 228(C), pages 1009-1019.
    8. Wang, Wei-Cheng & Tao, Ling, 2016. "Bio-jet fuel conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 801-822.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scaccabarozzi, R. & Gatti, M. & Campanari, S. & Martelli, E., 2021. "Solid oxide semi-closed CO2 cycle: A hybrid power cycle with 75% net efficiency and zero emissions," Applied Energy, Elsevier, vol. 290(C).
    2. Salas, D.A. & Boero, A.J. & Ramirez, A.D., 2024. "Life cycle assessment of bioenergy with carbon capture and storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Kreutz, Thomas G. & Larson, Eric D. & Elsido, Cristina & Martelli, Emanuele & Greig, Chris & Williams, Robert H., 2020. "Techno-economic prospects for producing Fischer-Tropsch jet fuel and electricity from lignite and woody biomass with CO2 capture for EOR," Applied Energy, Elsevier, vol. 279(C).
    4. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Moaaz Shehab & Kai Moshammer & Meik Franke & Edwin Zondervan, 2023. "Analysis of the Potential of Meeting the EU’s Sustainable Aviation Fuel Targets in 2030 and 2050," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    6. Subin Jung & Hyojin Jung & Yuchan Ahn, 2022. "Optimal Economic–Environmental Design of Heat Exchanger Network in Naphtha Cracking Center Considering Fuel Type and CO 2 Emissions," Energies, MDPI, vol. 15(24), pages 1-14, December.
    7. Cheng, Fangwei & Luo, Hongxi & Jenkins, Jesse D. & Larson, Eric D., 2023. "The value of low- and negative-carbon fuels in the transition to net-zero emission economies: Lifecycle greenhouse gas emissions and cost assessments across multiple fuel types," Applied Energy, Elsevier, vol. 331(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dossow, Marcel & Dieterich, Vincent & Hanel, Andreas & Spliethoff, Hartmut & Fendt, Sebastian, 2021. "Improving carbon efficiency for an advanced Biomass-to-Liquid process using hydrogen and oxygen from electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    3. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2023. "Utilization of renewable and sustainable aviation biofuels from waste tyres for sustainable aviation transport sector," Energy, Elsevier, vol. 276(C).
    4. Kreutz, Thomas G. & Larson, Eric D. & Elsido, Cristina & Martelli, Emanuele & Greig, Chris & Williams, Robert H., 2020. "Techno-economic prospects for producing Fischer-Tropsch jet fuel and electricity from lignite and woody biomass with CO2 capture for EOR," Applied Energy, Elsevier, vol. 279(C).
    5. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    6. Klein, Bruno Colling & Chagas, Mateus Ferreira & Junqueira, Tassia Lopes & Rezende, Mylene Cristina Alves Ferreira & Cardoso, Terezinha de Fátima & Cavalett, Otavio & Bonomi, Antonio, 2018. "Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries," Applied Energy, Elsevier, vol. 209(C), pages 290-305.
    7. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Life cycle energy and environmental impacts of hydroprocessed renewable jet fuel production from pennycress," Applied Energy, Elsevier, vol. 297(C).
    8. Wang, Wei-Cheng & Liu, Yu-Cheng & Nugroho, Rusdan Aditya Aji, 2022. "Techno-economic analysis of renewable jet fuel production: The comparison between Fischer-Tropsch synthesis and pyrolysis," Energy, Elsevier, vol. 239(PA).
    9. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.
    10. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    11. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2020. "Techno-economic analysis of pennycress production, harvest and post-harvest logistics for renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    12. Song, Miaojia & Zhang, Xinghua & Chen, Yubao & Zhang, Qi & Chen, Lungang & Liu, Jianguo & Ma, Longlong, 2023. "Hydroprocessing of lipids: An effective production process for sustainable aviation fuel," Energy, Elsevier, vol. 283(C).
    13. Li, Yuping & Zhao, Cong & Chen, Lungang & Zhang, Xinghua & Zhang, Qi & Wang, Tiejun & Qiu, Songbai & Tan, Jin & Li, Kai & Wang, Chenguang & Ma, Longlong, 2018. "Production of bio-jet fuel from corncob by hydrothermal decomposition and catalytic hydrogenation: Lab analysis of process and techno-economics of a pilot-scale facility," Applied Energy, Elsevier, vol. 227(C), pages 128-136.
    14. Lim, Jackson Hwa Keen & Gan, Yong Yang & Ong, Hwai Chyuan & Lau, Beng Fye & Chen, Wei-Hsin & Chong, Cheng Tung & Ling, Tau Chuan & Klemeš, Jiří Jaromír, 2021. "Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Dahal, Karna & Brynolf, Selma & Xisto, Carlos & Hansson, Julia & Grahn, Maria & Grönstedt, Tomas & Lehtveer, Mariliis, 2021. "Techno-economic review of alternative fuels and propulsion systems for the aviation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    17. Ali Mubarak Al-Qahtani, 2023. "A Comprehensive Review in Microwave Pyrolysis of Biomass, Syngas Production and Utilisation," Energies, MDPI, vol. 16(19), pages 1-16, September.
    18. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
    19. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    20. Zimmer, Tobias & Rudi, Andreas & Müller, Ann-Kathrin & Fröhling, Magnus & Schultmann, Frank, 2017. "Modeling the impact of competing utilization paths on biomass-to-liquid (BtL) supply chains," Applied Energy, Elsevier, vol. 208(C), pages 954-971.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919318963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.