IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13424-d1235169.html
   My bibliography  Save this article

Enhancing Sustainable Urban Energy Management through Short-Term Wind Power Forecasting Using LSTM Neural Network

Author

Listed:
  • Karthick Kanagarathinam

    (Department of Electrical and Electronics Engineering, GMR Institute of Technology, Rajam 532127, India)

  • S. K. Aruna

    (Department of Computer Science and Engineering, School of Engineering and Technology, CHRIST (Deemed to be University), Bangalore 560029, India)

  • S. Ravivarman

    (Department of Electrical and Electronics Engineering, Vardhaman College of Engineering, Shamshabad 501218, India)

  • Mejdl Safran

    (Department of Computer Science, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia)

  • Sultan Alfarhood

    (Department of Computer Science, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia)

  • Waleed Alrajhi

    (Department of Computer Science, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia)

Abstract

Integrating wind energy forecasting into urban city energy management systems offers significant potential for optimizing energy usage, reducing the carbon footprint, and improving overall energy efficiency. This article focuses on developing a wind power forecasting model using cutting-edge technologies to enhance urban city energy management systems. To effectively manage wind energy availability, a strategy is proposed to curtail energy consumption during periods of low wind energy availability and boost consumption during periods of high wind energy availability. For this purpose, an LSTM-based model is employed to forecast short-term wind power, leveraging a publicly available dataset. The LSTM model is trained with 27,310 instances and 10 wind energy system attributes, which were selected using the Pearson correlation feature selection method to identify crucial features. The evaluation of the LSTM-based forecasting model yields an impressive R 2 score of 0.9107. The model’s performance metrics attest to its high accuracy, explaining a substantial proportion of the variance in the test data. This study not only contributes to advancing wind power forecasting, but also holds promise for sustainable urban energy management, enabling cities to make informed decisions in optimizing energy consumption and promoting a greener, more resilient future.

Suggested Citation

  • Karthick Kanagarathinam & S. K. Aruna & S. Ravivarman & Mejdl Safran & Sultan Alfarhood & Waleed Alrajhi, 2023. "Enhancing Sustainable Urban Energy Management through Short-Term Wind Power Forecasting Using LSTM Neural Network," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13424-:d:1235169
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ju-Yeol Ryu & Bora Lee & Sungho Park & Seonghyeon Hwang & Hyemin Park & Changhyeong Lee & Dohyeon Kwon, 2022. "Evaluation of Weather Information for Short-Term Wind Power Forecasting with Various Types of Models," Energies, MDPI, vol. 15(24), pages 1-14, December.
    2. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
    3. Kavaskar Sekar & Karthick Kanagarathinam & Sendilkumar Subramanian & Ellappan Venugopal & C. Udayakumar & Ravi Samikannu, 2022. "An Improved Power Quality Disturbance Detection Using Deep Learning Approach," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-12, May.
    4. Fang Yao & Wei Liu & Xingyong Zhao & Li Song, 2020. "Integrated Machine Learning and Enhanced Statistical Approach-Based Wind Power Forecasting in Australian Tasmania Wind Farm," Complexity, Hindawi, vol. 2020, pages 1-12, September.
    5. Chia-Sheng Tu & Chih-Ming Hong & Hsi-Shan Huang & Chiung-Hsing Chen, 2020. "Short Term Wind Power Prediction Based on Data Regression and Enhanced Support Vector Machine," Energies, MDPI, vol. 13(23), pages 1-18, November.
    6. Ming Pang & Lei Zhang & Yajun Zhang & Ao Zhou & Jianming Dou & Zhepeng Deng, 2022. "Ultra-Short-Term Wind Speed Forecasting Using the Hybrid Model of Subseries Reconstruction and Broad Learning System," Energies, MDPI, vol. 15(12), pages 1-21, June.
    7. Lledó, Ll. & Torralba, V. & Soret, A. & Ramon, J. & Doblas-Reyes, F.J., 2019. "Seasonal forecasts of wind power generation," Renewable Energy, Elsevier, vol. 143(C), pages 91-100.
    8. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao-Ming Huang & Shin-Ju Chen & Sung-Pei Yang & Hsin-Jen Chen, 2023. "One-Day-Ahead Hourly Wind Power Forecasting Using Optimized Ensemble Prediction Methods," Energies, MDPI, vol. 16(6), pages 1-22, March.
    2. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    3. Jingtao Huang & Gang Niu & Haiping Guan & Shuzhong Song, 2023. "Ultra-Short-Term Wind Power Prediction Based on LSTM with Loss Shrinkage Adam," Energies, MDPI, vol. 16(9), pages 1-13, April.
    4. Georgios Delagrammatikas & Spyridon Roukanas, 2023. "Offshore Wind Farm in the Southeast Aegean Sea and Energy Security," Energies, MDPI, vol. 16(13), pages 1-21, July.
    5. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    6. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    7. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
    8. Wu, Zhuochun & Xiao, Liye, 2019. "A structure with density-weighted active learning-based model selection strategy and meteorological analysis for wind speed vector deterministic and probabilistic forecasting," Energy, Elsevier, vol. 183(C), pages 1178-1194.
    9. Olaofe, Z.O., 2019. "Quantification of the near-surface wind conditions of the African coast: A comparative approach (satellite, NCEP CFSR and WRF-based)," Energy, Elsevier, vol. 189(C).
    10. Robert Basmadjian & Amirhossein Shaafieyoun, 2023. "Assessing ARIMA-Based Forecasts for the Percentage of Renewables in Germany: Insights and Lessons for the Future," Energies, MDPI, vol. 16(16), pages 1-19, August.
    11. Meng, Anbo & Zhu, Zibin & Deng, Weisi & Ou, Zuhong & Lin, Shan & Wang, Chenen & Xu, Xuancong & Wang, Xiaolin & Yin, Hao & Luo, Jianqiang, 2022. "A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine," Energy, Elsevier, vol. 260(C).
    12. Xiao, Yulong & Zou, Chongzhe & Chi, Hetian & Fang, Rengcun, 2023. "Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis," Energy, Elsevier, vol. 267(C).
    13. Wang, Jianzhou & Du, Pei & Niu, Tong & Yang, Wendong, 2017. "A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting," Applied Energy, Elsevier, vol. 208(C), pages 344-360.
    14. Jin, Jingxin & Li, Yilin & Ye, Lin & Xu, Xunjian & Lu, Jiazheng, 2023. "Integration of atmospheric stability in wind resource assessment through multi-scale coupling method," Applied Energy, Elsevier, vol. 348(C).
    15. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    16. Farah, Shahid & David A, Wood & Humaira, Nisar & Aneela, Zameer & Steffen, Eger, 2022. "Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Shahriari, M. & Cervone, G. & Clemente-Harding, L. & Delle Monache, L., 2020. "Using the analog ensemble method as a proxy measurement for wind power predictability," Renewable Energy, Elsevier, vol. 146(C), pages 789-801.
    18. Katopodis, Theodoros & Markantonis, Iason & Vlachogiannis, Diamando & Politi, Nadia & Sfetsos, Athanasios, 2021. "Assessing climate change impacts on wind characteristics in Greece through high resolution regional climate modelling," Renewable Energy, Elsevier, vol. 179(C), pages 427-444.
    19. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    20. Arnaldo Rabello de Aguiar Vallim Filho & Daniel Farina Moraes & Marco Vinicius Bhering de Aguiar Vallim & Leilton Santos da Silva & Leandro Augusto da Silva, 2022. "A Machine Learning Modeling Framework for Predictive Maintenance Based on Equipment Load Cycle: An Application in a Real World Case," Energies, MDPI, vol. 15(10), pages 1-41, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13424-:d:1235169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.