IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9250937.html
   My bibliography  Save this article

Integrated Machine Learning and Enhanced Statistical Approach-Based Wind Power Forecasting in Australian Tasmania Wind Farm

Author

Listed:
  • Fang Yao
  • Wei Liu
  • Xingyong Zhao
  • Li Song

Abstract

This paper develops an integrated machine learning and enhanced statistical approach for wind power interval forecasting. A time-series wind power forecasting model is formulated as the theoretical basis of our method. The proposed model takes into account two important characteristics of wind speed: the nonlinearity and the time-changing distribution. Based on the proposed model, six machine learning regression algorithms are employed to forecast the prediction interval of the wind power output. The six methods are tested using real wind speed data collected at a wind station in Australia. For wind speed forecasting, the long short-term memory (LSTM) network algorithm outperforms other five algorithms. In terms of the prediction interval, the five nonlinear algorithms show superior performances. The case studies demonstrate that combined with an appropriate nonlinear machine learning regression algorithm, the proposed methodology is effective in wind power interval forecasting.

Suggested Citation

  • Fang Yao & Wei Liu & Xingyong Zhao & Li Song, 2020. "Integrated Machine Learning and Enhanced Statistical Approach-Based Wind Power Forecasting in Australian Tasmania Wind Farm," Complexity, Hindawi, vol. 2020, pages 1-12, September.
  • Handle: RePEc:hin:complx:9250937
    DOI: 10.1155/2020/9250937
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/9250937.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/9250937.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/9250937?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karthick Kanagarathinam & S. K. Aruna & S. Ravivarman & Mejdl Safran & Sultan Alfarhood & Waleed Alrajhi, 2023. "Enhancing Sustainable Urban Energy Management through Short-Term Wind Power Forecasting Using LSTM Neural Network," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    2. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9250937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.