IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3724-d818987.html
   My bibliography  Save this article

A Machine Learning Modeling Framework for Predictive Maintenance Based on Equipment Load Cycle: An Application in a Real World Case

Author

Listed:
  • Arnaldo Rabello de Aguiar Vallim Filho

    (Graduate Program in Applied Computing and Graduate Program in Controllership and Corporate Finance, Mackenzie Presbyterian University, Rua da Consolacao, 896, Sao Paulo 01302-907, Brazil)

  • Daniel Farina Moraes

    (Computer Science Department, Mackenzie Presbyterian University, Rua da Consolacao, 896, Sao Paulo 01302-907, Brazil)

  • Marco Vinicius Bhering de Aguiar Vallim

    (Graduate Program in Electrical Engineering and Computing, Mackenzie Presbyterian University, Rua da Consolacao, 896, Sao Paulo 01302-907, Brazil)

  • Leilton Santos da Silva

    (EMAE—Metropolitan Company of Water & Energy, Avenida Nossa Senhora do Sabara, 5312, Sao Paulo 04447-902, Brazil)

  • Leandro Augusto da Silva

    (Graduate Program in Applied Computing and Graduate Program in Electrical Engineering and Computing, Mackenzie Presbyterian University, Rua da Consolação, 896, Sao Paulo 01302-907, Brazil)

Abstract

From a practical point of view, a turbine load cycle (TLC) is defined as the time a turbine in a power plant remains in operation. TLC is used by many electric power plants as a stop indicator for turbine maintenance. In traditional operations, a maximum time for the operation of a turbine is usually estimated and, based on the TLC, the remaining operating time until the equipment is subjected to new maintenance is determined. Today, however, a better process is possible, as there are many turbines with sensors that carry out the telemetry of the operation, and machine learning (ML) models can use this data to support decision making, predicting the optimal time for equipment to stop, from the actual need for maintenance. This is predictive maintenance, and it is widely used in Industry 4.0 contexts. However, knowing which data must be collected by the sensors (the variables), and their impact on the training of an ML algorithm, is a challenge to be explored on a case-by-case basis. In this work, we propose a framework for mapping sensors related to a turbine in a hydroelectric power plant and the selection of variables involved in the load cycle to: (i) investigate whether the data allow identification of the future moment of maintenance, which is done by exploring and comparing four ML algorithms; (ii) discover which are the most important variables (MIV) for each algorithm in predicting the need for maintenance in a given time horizon; (iii) combine the MIV of each algorithm through weighting criteria, identifying the most relevant variables of the studied data set; (iv) develop a methodology to label the data in such a way that the problem of forecasting a future need for maintenance becomes a problem of binary classification (need for maintenance: yes or no) in a time horizon. The resulting framework was applied to a real problem, and the results obtained pointed to rates of maintenance identification with very high accuracies, in the order of 98%.

Suggested Citation

  • Arnaldo Rabello de Aguiar Vallim Filho & Daniel Farina Moraes & Marco Vinicius Bhering de Aguiar Vallim & Leilton Santos da Silva & Leandro Augusto da Silva, 2022. "A Machine Learning Modeling Framework for Predictive Maintenance Based on Equipment Load Cycle: An Application in a Real World Case," Energies, MDPI, vol. 15(10), pages 1-41, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3724-:d:818987
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3724/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3724/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Toubeau, Jean-François & Pardoen, Lorie & Hubert, Louis & Marenne, Nicolas & Sprooten, Jonathan & De Grève, Zacharie & Vallée, François, 2022. "Machine learning-assisted outage planning for maintenance activities in power systems with renewables," Energy, Elsevier, vol. 238(PC).
    2. Angel Gil & Miguel A. Sanz-Bobi & Miguel A. Rodríguez-López, 2018. "Behavior Anomaly Indicators Based on Reference Patterns—Application to the Gearbox and Electrical Generator of a Wind Turbine," Energies, MDPI, vol. 11(1), pages 1-15, January.
    3. Quinn McNemar, 1947. "Note on the sampling error of the difference between correlated proportions or percentages," Psychometrika, Springer;The Psychometric Society, vol. 12(2), pages 153-157, June.
    4. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    5. Theissler, Andreas & Pérez-Velázquez, Judith & Kettelgerdes, Marcel & Elger, Gordon, 2021. "Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Giovanni Gravito de Carvalho Chrysostomo & Marco Vinicius Bhering de Aguiar Vallim & Leilton Santos da Silva & Leandro A. Silva & Arnaldo Rabello de Aguiar Vallim Filho, 2020. "A Framework for Big Data Analytical Process and Mapping—BAProM: Description of an Application in an Industrial Environment," Energies, MDPI, vol. 13(22), pages 1-28, November.
    7. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
    8. Irfan Ullah & Fan Yang & Rehanullah Khan & Ling Liu & Haisheng Yang & Bing Gao & Kai Sun, 2017. "Predictive Maintenance of Power Substation Equipment by Infrared Thermography Using a Machine-Learning Approach," Energies, MDPI, vol. 10(12), pages 1-13, December.
    9. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2015. "Multi-level predictive maintenance for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 83-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arafat, M.Y. & Hossain, M.J. & Alam, Md Morshed, 2024. "Machine learning scopes on microgrid predictive maintenance: Potential frameworks, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    2. Ruiqi Tian & Santiago Gomez-Rosero & Miriam A. M. Capretz, 2023. "Health Prognostics Classification with Autoencoders for Predictive Maintenance of HVAC Systems," Energies, MDPI, vol. 16(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fouzi Harrou & Bilal Taghezouit & Sofiane Khadraoui & Abdelkader Dairi & Ying Sun & Amar Hadj Arab, 2022. "Ensemble Learning Techniques-Based Monitoring Charts for Fault Detection in Photovoltaic Systems," Energies, MDPI, vol. 15(18), pages 1-28, September.
    2. Patrick Zschech & Kai Heinrich & Raphael Bink & Janis S. Neufeld, 2019. "Prognostic Model Development with Missing Labels," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 327-343, June.
    3. Uttam Bandyopadhyay & Atanu Biswas & Shirsendu Mukherjee, 2009. "Adaptive two-treatment two-period crossover design for binary treatment responses incorporating carry-over effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 13-33, March.
    4. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    5. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    8. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    9. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    10. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    11. Osni Silva Junior & Jose Carlos Pereira Coninck & Fabiano Gustavo Silveira Magrin & Francisco Itamarati Secolo Ganacim & Anselmo Pombeiro & Leonardo Göbel Fernandes & Eduardo Félix Ribeiro Romaneli, 2023. "Impacts of Atmospheric and Load Conditions on the Power Substation Equipment Temperature Model," Energies, MDPI, vol. 16(11), pages 1-15, May.
    12. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    13. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    14. Pan, Yongjun & Sun, Yu & Li, Zhixiong & Gardoni, Paolo, 2023. "Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    15. Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Bester Tawona Mudereri & Elfatih M. Abdel-Rahman & Shepard Ndlela & Louisa Delfin Mutsa Makumbe & Christabel Chiedza Nyanga & Henri E. Z. Tonnang & Samira A. Mohamed, 2022. "Integrating the Strength of Multi-Date Sentinel-1 and -2 Datasets for Detecting Mango ( Mangifera indica L.) Orchards in a Semi-Arid Environment in Zimbabwe," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    17. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    18. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    19. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    20. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3724-:d:818987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.